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Abstract—The digital world has given rise to massive quantities of data that include rich semantic and complex networks. A social
graph, for example, containing hundreds of millions of actors and tens of billions of relationships is not uncommon. Analyzing
these large datasets, even to answer simple analytic queries, often pushes the limits of algorithms and machine architectures.
We present GraphCT, a scalable framework for graph analysis using parallel and multithreaded algorithms on shared memory
platforms. Utilizing the unique characteristics of the Cray XMT, GraphCT enables fast network analysis at unprecedented scales
on a variety of input datasets. On a synthetic power law graph with 135 million vertices and 4 billion edges, we can find the
connected components in under 3 minutes. We can estimate the betweenness centrality of a similar graph with 537 million
vertices and over 8 billion edges in under one hour. GraphCT also builds on multicore systems using OpenMP.
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1 INTRODUCTION

THE vast quantity of data being created by so-
cial networks [1], sensor networks [2], health-

care records [3], bioinformatics [4], computer network
security [5], computational sciences [6], and many
other fields offers new challenges for analysis. When
represented as a graph, this data can fuel knowledge
discovery by revealing significant interactions and
community structures. Current network analysis soft-
ware packages (e.g. Pajek [7], R (igraph) [8], Tulip [9],
UCInet [10]) can handle graphs up to several thou-
sand vertices and a million edges. These applications
are limited by the scalability of the supported algo-
rithms and the resources of the workstation. In order
to analyze today’s graphs and the semantic data of the
future, scalable algorithms and machine architectures
are needed for data-intensive computing. GraphCT is
a collection of new parallel and scalable algorithms for
static graph analysis. These algorithms, running atop
multithreaded architectures such as the Cray XMT
and Intel multicore CPUs, can analyze graphs with
hundreds of millions of vertices and billions of edges
in minutes, instead of days or weeks. GraphCT is
able to, for the first time, enable analysts and domain
experts to conduct in-depth analytical workflows of
their data at massive scales in an interative time
frame.

The foundation of GraphCT is a modular kernel-
based design using efficient data representations in
which an analysis workflow can be expressed through
a series of function calls. All functions are required
to use a single graph data representation. While
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Fig. 1. GraphCT is an open source framework for
developing scalable multithreaded graph analytics in a
cross-platform environment.

some algorithms or input graphs may benefit from
a particular data representation, the use of a single
common data structure enables plug-and-play capa-
bility as well as ease of implementation and shar-
ing new kernels. Basic data input/output as well
as fundamental graph operations such as subgraph
extraction are provided to enable domain scientists to
focus on conducting high-level analyses. A wide va-
riety of multithreaded graph algorithms are provided
including clustering coefficients, connected compo-
nents, betweenness centrality, k-core, and others, from
which workflows can easily be developed. Figure 2
illustrates an example workflow. Analysis can be con-
ducted on unweighted and weighted graphs, undi-
rected and directed. Using the included compatibility
layer, GraphCT can be built on the Cray XMT with
XMT-C or on a commodity Intel or AMD workstation
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Fig. 2. An example user analysis workflow in which the graph is constructed, the vertices are labeled according
to their connected components, and a single component is extracted for further analysis using several complex
metrics, such as betweenness centrality.

using OpenMP.
The near-exponential growth of massive social net-

works on the Internet over the last several years has
been staggering. Facebook has more than 845 million
users, over half of which are active daily [1]. Twitter
has tens of millions of users, and the blogosphere
has an estimated hundreds of millions of English lan-
guage blogs. In each case, the network contains both
topological information (actors and links) as well as a
rich semantic network of interactions. If the topology
information of Facebook alone was represented with
a compressed sparse row plus edge list and edge
weights using 64-bit data types, the data structure
alone would cost over 2.4 TB of memory. If a machine
could iterate over 1 billion edges per second, it would
take 2 minutes to read each edge one time. The scale
of these social networks necessitates specialized com-
puter architecture and massively parallel algorithms
for analysis.

Real world networks of this kind challenge modern
computing in several ways. These graphs typically
exhibit “small-world” [11] properties such as small
diameter and skewed degree distribution. The low
diameter implies that all reachable vertices can be
found in a small number of hops. A highly skewed
degree distribution, where most vertices have a few
neighbors and several vertices have many neighbors,
often leads to workload imbalance among threads.
One proposed solution is to handle high- and low-
degree vertices separately; parallelize work across
low-degree vertices and within high-degree vertices.
A runtime system must be able to handle dynamic,
fine-grained parallelism among hundreds of thou-
sands of threads with low overhead. Executing a
breadth-first search from a particular vertex quickly
consumes the entire graph. The memory access pat-
tern of such an operation is unpredictable with little
spatial or temporal locality. Caches are ineffective for
lowering memory access latency in this case. The
Cray XMT relies on hardware multithreading with
low overhead context switches, rather than caches, to
tolerate the latency to memory. Lightweight and fine-

grained synchronization enable algorithm designers
to expose large amounts of parallelism in the appli-
cation.

In our previous work [12], [13], [14], [15] we pre-
sented new parallel algorithms for the analysis of
online social networks and implementations on small
multithreaded architectures, such as Intel Nehalem,
Sun Niagara, and small Cray XMTs. We have ex-
tended our work to scale up to larger machines (up
to 128 processors) using a wider range of graph types
including larger graph datasets and graphs originat-
ing from real-world data sources. We have added a
number of new multithreaded algorithms for massive
graph analysis in a simple, yet powerful framework.

The main contributions of this work are:
• k-Betweenness Centrality, a new parallel algo-

rithm for finding important vertices in a network
that is robust to edge deletions

• Unprecedented scalability of complex analytics to
128 processors

• The first analysis framework to enable a work-
flow of analytics on graphs with billions of ver-
tices and edges

In the remainder of the paper, we will present
the design challenges and experimental results for
GraphCT. Section 2 will cover the requirements for
this graph application. Section 3 will explain the
various kernels and key features that have been devel-
oped. Sections 4, 5, and 6 will present the implemen-
tation and performance of connected components,
clustering coefficients, and k-betweenness centrality,
respectively.

2 MOTIVATION AND REQUIREMENTS

A number of software applications have been de-
veloped on the desktop computer for analyzing and
visualizing graph datasets. Among them, Pajek is one
of the most widely used, along with R (igraph), Tulip,
UCInet, and many others [7], [8], [9], [10]. While
each application has its differences, all are limited by
the size of workstation main memory. Pajek has been
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known to run complex graph analytics on inputs with
up to two million vertices, but many other applica-
tions are limited to tens or hundreds of thousands of
vertices.

In the 9th DIMACS challenge on shortest path
routing, a road network consisting of the entire United
States of America had almost 24 million vertices and
60 million edges [16]. The Facebook social network
“friend” graph is estimated to contain approximately
845 million vertices and average degree of 130 [1].
From these examples, it should be clear that real data
analysis requires large parallel machines and scalable
software.

The development of new scalable algorithms and
frameworks for massive graph analysis is the subject
of many research efforts. The Parallel Boost Graph
Library (PBGL) [17] is a C++ library for distributed
memory graph computations. The API is similar to
that of the Boost Graph Library. The authors report
scalable performance up to about 100 processors.
Distributed memory graph processing often requires
partitioning and data replication, which can be chal-
lenging for some classes of graphs.

SNAP [18] is an open source parallel library for
network analysis and partitioning using multicore
workstations. It is parallelized using OpenMP and
provides a simple API with support for very large
scale graphs. It is one of the only libraries that pro-
vides a suite of algorithms for community detection.

Sandia’s Multithreaded Graph Library (MTGL) [19]
is a C++ library for implementing graph applications
on multithreaded architectures, particularly the Cray
XMT. MTGL uses the notion of a “visitor” class to
describe operations that take place when a vertex is
visited, such as during a breadth first search.

Given the immense size in memory of the graphs
of interest, it is not possible to store a separate rep-
resentation for each analysis kernel. Since the key ca-
pability of GraphCT is running a number of analytics
against an unknown data source, we employ a simple,
yet powerful framework for our computation. Each
kernel implementation is required to use a common
graph data structure. Using an application-specific
representation may accelerate certain algorithms, but
also induces a cost in terms of computation and mem-
ory footprint to translate between representations as
one moves from kernel to kernel. By using the same
data structure for each kernel, all kernels can be run
in succession (or even in parallel if resources allow)
without the need to transfer the graph between data
structures. As a result, GraphCT enables the results of
one computation to easily influence the next computa-
tion, such as the extraction of one or more connected
components for more in-depth study.

Efficient representation of networks is a well-
studied problem with numerous options to choose
from depending on the size, topology, degree distri-
bution and other characteristics of a particular graph.

If these characteristics are known a priori one may be
able to leverage this knowledge to store the graph in
a manner that will provide the best performance for a
given algorithm. Because we are unable to make any
assumptions about the graph under study and will be
running a variety of algorithms on the data, we must
choose a representation that will provide adequate
performance for all types of graphs and analytics.

2.1 The Cray XMT

To facilitate scaling to the sizes of massive datasets
previously described, GraphCT will utilize the mas-
sive shared memory and multithreading capabilities
of the Cray XMT. Large planar graphs, such as
road networks, can be partitioned with small separa-
tors and analyzed in distributed memory with good
computation-to-communication ratios at the bound-
aries. Graphs arising from massive social networks,
on the other hand, are challenging to partition and
lack small separators [18], [20]. For these problems,
utilizing a large global shared memory eliminates the
requirement that data must be evenly partitioned.
The entire graph can be stored in main memory and
accessed by all threads. With this architectural feature,
parallelism can be expressed at the level of individual
vertices and edges. Enabling parallelism at this level
requires fine-grained synchronization constructs such
as atomic fetch-and-add and compare-and-swap.

The Cray XMT offers a global shared memory
using physically distributed memories interconnected
by a high speed, low latency, proprietary network.
Memory addresses are hashed to intentionally break
up locality, effectively spreading data throughout the
machine. As a result, nearly every memory reference
is a read or write to a remote memory. Graph analysis
codes are generally a series of memory references with
very little computation in between, resulting in an
application that runs at the speed of memory and the
network.

On the Cray XMT, hardware multithreading is used
to overcome the latency of repeated memory accesses.
A single processor has 128 hardware contexts and can
switch threads in a single cycle. A thread executes
until it reaches a long latency instruction, such as a
memory reference. Instead of blocking, the processor
will switch to another thread with an instruction
ready to execute on the next cycle. Given enough
parallelism and enough hardware contexts, the pro-
cessor’s execution units can stay busy and hide some
or all of the memory latency.

Since a 128-processor Cray XMT contains about
12,000 user hardware contexts, it is the responsi-
bility of the programmer to reveal a large degree
of parallelism in the code. Coarse- as well as fine-
grained parallelism can be exploited using Cray’s par-
allelizing compiler. The programmer inserts #pragma
statements to assert that a given loop’s iterations
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are independent. Often iterations of a loop will syn-
chronize on shared data. To exploit this kind of
parallelism, the Cray XMT provides low-cost fine-
grained synchronization primitives such as full-empty
bit synchronization and atomic fetch-and-add. Using
these constructs, it is possible to expose fine-grained
parallelism, such as operations over all vertices and
all neighbors, as well as coarse-grained parallelism,
such as multiple breadth first searches in parallel.
Internally, the fine-grained synchronization constructs
are used by the Cray runtime for dynamic load bal-
ancing, which helps to alleviate problems associated
with the highly skewed degree distribution of scale-
free networks.

3 FEATURES

3.1 Data Representation
The design model for GraphCT dictates that all anal-
ysis kernels should be able to read from a common
data representation of the input graph. A function can
allocate its own auxiliary data structures (queues, lists,
etc.) in order to perform a calculation, but the edge
and vertex data should not be duplicated. This design
principle allows for efficient use of the machine’s
memory to support massive graphs and complex
queries.

The data representation used internally for the
graph is an extension based on compressed sparse
row (CSR) format. In CSR, contiguous edges orginat-
ing from the same source vertex are stored by desti-
nation vertex only. An offset array indicates at which
location a particular vertex’s edges begin. The com-
mon access pattern is two-deep loop nest in which
the outer loop is over all vertices, and the inner loop
identifies the subset of edges originating from a vertex
and performs a computation over its neighbors. We
build upon the CSR format by additionally storing
the source vertex, thus also expressing an edge list
directly. Although redundant, some kernels can be
expressed efficiently by parallelizing over the entire
edge list, eliminating some load balance issues using
a single loop. In this way, the internal graph data
representation allows for the easy implementation of
edge-centric kernels as well as vertex-centric kernels.

For weighted graphs, we store the given weight of
each edge represented with a 64-bit integer. For input
graphs that are unweighted, these values are initial-
ized to an arbitrary value. We allocate an additional
array with length of the number of vertices that each
function can use according to its own requirements.
In some cases, such as breadth-first search, a kernel
marks vertices as it visits them. This array can be used
to provide a coloring or mapping as input or output
of a function. This coloring could be used to extract
individual components, as an example.

In this format, we can represent both directed and
undirected graphs. The common data representation

between kernels relieves some of the burden of al-
locating frequently used in-memory data structures.
With the graph remaining in-memory between ker-
nel calls, we provide a straightforward API through
which analytics can communicate their results.

3.2 Clustering Coefficients
Clustering coefficients measure the density of closed
triangles in a network and are one method for deter-
mining if a graph is a small-world graph [11]. We may
be interested in the global clustering coefficient, which
is a single number describing the entire graph, or
the local clustering coefficients, which is a per-vertex
measure of triangles. Although there is some dis-
agreement in the literature, both of these metrics are
applicable to undirected graphs. For directed graphs,
several variations have been proposed and we have
adopted the transitivity coefficients, which is a natural
extension of the local clustering coefficient idea.

Section 5 contains a detailed case study of our
implementation on the Cray XMT and performance
results on large synthetic networks.

3.3 Connected Components
The connected components of the graph indicate the
existence of paths between sets of vertices. If two
vertices are in the same component, then there exists
a path between them. Likewise, if two vertices reside
in different components, a search from one vertex will
not find the other. If the connected components of the
graph are known, determining the st connectivity for
a pair of vertices can be calculated easily.

In Section 4 we will offer in-depth coverage of the
algorithm, implementation, and performance of our
connected components routine. In short, we use a
shared memory version of the classical Shiloach and
Vishkin algorithm. On the Cray XMT, we determine
the connected components of a scale-free undirected
graph with 135 million vertices and 2 billion edges in
about 15 seconds.

3.4 Distributions
When the nature of the input graph is unknown,
the degree distribution is often a metric of interest.
The degree distribution will indicate how sparse or
dense the graph is, and the maximum degree and
variance will indicate how skewed the distribution is.
A skewed distribution may actually be a power-law
distribution or indicate that the graph comes from
a data source with small-world properties. From a
programmer’s perspective, a large variance in degree
relative to the average may indicate challenges in
parallelism and load balance.

The maximum degree, average degree, and variance
are quickly calculated using a single loop and several
accumulators over the vertex offset array. On the
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Cray XMT, the compiler is able to easily parallelize
this loop. The same technique can be applied to
the output of the connected components function.
Given the vertex-component mapping, we must first
histogram the values to determine the number of
vertices in each component, but then can, in the same
manner, calculate distribution statistics on the size of
connected components.

3.5 Graph Diameter
The diameter of the graph is an important metric
for understanding the nature of the input graph at
first glance. If interested in the spread of disease in
an interaction network, the diameter may helpful in
estimating the rate of transmission and the time to full
coverage. Calculating the diameter exactly requires
an all-pairs shortest path computation, which is pro-
hibitive for the large graphs of interest. Estimating the
graph diameter is a well-studied problem and many
approaches have been suggested.

In GraphCT, we estimate the diameter by random
sampling. Given a fixed number of source vertices
(expressed as a percentage of the total number of
vertices), a breadth-first search is executed from each
chosen source. The length of the longest path found
during that search is compared to the global maxi-
mum seen so far and updated if it is longer. With each
sample we more closely approximate the true diame-
ter of the graph. Ignoring the existence of long chains
of vertices, we can obtain a reasonable estimate with
only a small fraction of the total number of breadth
first searches required to get an exact diameter. How-
ever, GraphCT leaves the option of the number of
samples to the user, so an exact computation can be
requested.

Obtaining a reasonable estimate of the graph diam-
eter can have practical consequences for the analysis
kernels as well. For example, a kernel running a level-
synchronous breadth-first search will require a queue
for each level. The total number of items in the all
of the queues is bounded by the number of vertices,
but the number of queues is bounded by the graph
diameter. If the diameter is assumed to be on the
order of the square root of the number of vertices (a
computer network perhaps) and the same kernel is
run on an input graph where the diameter is much
larger (a road network), the analysis will run out of
memory and abort. On the other hand, allocating a
queue for the worst-case case scenario of a long chain
of vertices is overly pessimistic. By quickly estimating
the diameter of the graph using a small number of
breadth-first searches, we can attempt to allocate the
“right” amount of memory upfront.

3.6 Graph Parsing and Generation
Since the purpose of graph analysis in general, and
GraphCT in particular, is to shed light on the charac-
teristics of real datasets, we must provide mechanisms

to import data from the outside world. Given that
the graphs are so large as to require machines with
terabytes of main memory, it would be reasonable to
expect the input data files to be of the same massive
size. Most existing graph libraries for the desktop
workstation import file formats that are essentially
edge lists in text format. To support a similar mech-
anism, we must be able to read from disk an entire
text file, read each line (corresponding to an edge),
and construct a graph data structure in memory.

In GraphCT, we provide support for the common
DIMACS format, where each line consists of a letter
“a” (indicating it is an edge), the source vertex num-
ber, destination vertex number, and an edge weight.
To leverage the large shared memory of the Cray
XMT, we copy the entire file from disk into main
memory. In parallel, each thread obtains a block of
lines to process. A thread reserves a corresponding
number of entries in an edge list. Reading the line, the
thread obtains each field and writes it into the edge
list. Once all threads have completed parsing the text
file, it is discarded and the threads cooperatively build
the graph data structure. In this manner, we are able
to process text files with sizes ranging in the hundreds
of gigabytes in just a few seconds.

In the event that an input dataset is likely to be used
frequently, we provide an offline mechanism to parse
the text file and output an efficient binary represen-
tation of the internal data structure. This binary file
on disk is likely to be much smaller than the original
text file, reducing storage requirements and I/O time.

For instances when real data is not available with
the scale or characteristics of interest, GraphCT is
able to provide graph generators that will provide
an output file on disk that can be read in for kernel
testing. As an example, we provide an implementa-
tion of the RMAT graph generator, which was used
in the DARPA High Productivity Computing Sys-
tems (HPCS) Scalable Synthetic Compact Applications
benchmark #2 (SSCA2). This generator uses repeated
sampling from a Kronecker product to produce a
random graph with a degree distribution similar to
those arising from social networks. By varying in
input parameters of the generator, it can also be
used to produce an Erdös-Rényi random graph. The
generator takes as input the probabilities a, b, c, and d
which determine the degree distribution, the number
of vertices (must be a power of two), and the number
of edges. Duplicate and self edges are removed, so the
total number of edges produced may be slightly less
than the input parameter given.

3.7 Modularity and Conductance
In graph partitioning and community detection, a
variety of scoring functions have been proposed for
evaluating the quality of a cut or community. Among
the more popular metrics is modularity and conduc-
tance. Modularity is a measure of interconnectedness
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of vertices in a group. A community with a high
modularity score is one in which the vertices are more
tightly connected within the community than with the
rest of the network. Formally, modularity is defined
as:

Q =
1

4m

∑
ij

(
Aij −

kikj
2m

)
sisj (1)

where i and j are vertices in the graph, m is the
total number of edges, ki is the degree of vertex i,
and si expresses the community to which vertex i
belongs [21].

Given a community mapping of vertices, modu-
larity is calculated using two parallel loops over all
vertices. The first calculates the total number of edges
in each community. The second loop gives credit for
neighbors of vertices that are in the same community
and subtracts credit for the external connections. The
modularity score is reported and returned at the end.
This function can be easily used as a scoring compo-
nent of a clustering method. For example, in greedy
agglomerative clustering, after each component merge
the modularity is evaluated and stored in the merge
tree.

Conductance is a scoring function for a cut estab-
lishing two partitions. The conductance over a cut
measures the number of edges within the partition
versus the number of edges that span the partition.
Conductance can be applied to both directed and
undirected graphs, although the undirected version
is simplified. Formally, conductance is defined as:

Φ =
e(S, S̄)

dmin
{
|S| ,

∣∣S̄∣∣} (2)

where S̄ is the set of vertices not in S and e(S, S̄)
is the number of edges between S and S̄. The total
number of edges that could span the cut is expressed
as d |S| =

∑
v∈S d(v) where d(v) is the degree of vertex

v [22]. The value of Φ ranges from 0 to 1. While the
formula above is for an unweighted graph, it can be
generalized to weighted networks by summing edge
weights instead of degrees.

Given an edge cut expressed as a 2-coloring of ver-
tices, the conductance is computed by iterating over
all edges. Each edge is placed in one of three buckets:
1) both endpoints belong to the same partition, 2) the
endpoints are in partition A and B respectively, or 3)
the endpoints are in partition B and A respectively.
The total number of items in each bucket is counted
and the conductance is computed according to the
formula based on the larger of the two partitions.

4 CONNECTED COMPONENTS

Finding the connected components of the graph de-
termines a per-vertex mapping such that all vertices
in a component are reachable from each other and not

Fig. 3. Parallel multithreaded version of Shiloach-
Vishkin algorithm for finding the connected compo-
nents of a graph.
Input: G(V,E)
Output: M [1..n], where M [v] is the component to

which vertex v belongs
1: changed← 1
2: for all v ∈ V in parallel do
3: M [v]← v

4: while changed 6= 0 do
5: changed := 0
6: for all 〈i, j〉 ∈ E in parallel do
7: if M [i] < M [j] then
8: M [M [j]] := M [i]
9: changed := 1

10: for all v ∈ V in parallel do
11: while M [v] 6= M [M [v]] do
12: M [v] := M [M [v]]

reachable from those vertices in other components.
Understanding the size distribution of components
as well as the number of connected components is
useful for first order analysis of a graph. The con-
nected components mapping is also useful for other
analytics. A sampling algorithm may sample vertices
according to the distribution of component sizes such
that all components are appropriately represented in
the sampling. An analysis may focus on just the small
components or only the biggest component in order to
isolate those vertices of greatest interest. Finding the
connected components is a useful metric unto itself
and also a common pre-processing step.

The Shiloach and Vishkin algorithm [23] is a clas-
sical algorithm for finding the connected components
of an undirected graph. This algorithm is well suited
for shared memory and exhibits per-edge parallelism
that can be exploited.

Each vertex is initialized to its own unique color.
At each step, neighboring vertices greedily color each
other such that the vertex with the lowest ID wins.
The process ends when each vertex is the same color
as its neighbors. The number of steps is proportional
to the diameter of the graph, so for small-world
networks the algorithm converges quickly.

Using the fine-grained synchronization of the Cray
XMT, the colors of neighboring vertices are checked
and updated in parallel. A shared counter recording
the number of changes is updated so as to detect con-
vergence. The scalability of the algorithm is governed
by the average degree of the vertices.

In Figure 4 we present execution times for con-
nected components on several massive undirected
graphs using a 128 processor Cray XMT. The first
graph is a sparse, planar graph of the US road net-
work. The rest of the graphs are synthetic RMAT
graphs with small-world properties. Using 128 pro-
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Name NV NE P=16 P=32 P=64 P=128
USA Road Network 23,947,347 58,333,344 4.13 3.17 2.64 4.26
RMAT 134,217,727 1,071,420,576 34.7 21.0 13.8 12.3
RMAT 134,217,727 2,139,802,777 59.3 36.8 20.0 15.1
RMAT 134,217,727 4,270,508,334 251.6 211.7 110.2 164.3

Fig. 4. Running times in seconds for connected components on a 128 processor Cray XMT

cessors, we can quickly determine the connected com-
ponents of the graph in under 20 seconds. Scalability
increases as the density of the network increases.

5 CLUSTERING COEFFICIENTS

Clustering coefficients measure the density of closed
triangles in a network and are one method for de-
termining if a graph is a small-world graph [11]. We
adopt the terminology of [11] and limit our focus
to undirected and unweighted graphs. A triplet is
an ordered set of three vertices, (i, v, j), where v is
considered the focal point and there are undirected
edges 〈i, v〉 and 〈v, j〉. An open triplet is defined as
three vertices in which only the required two are
connected, for example the triplet (m, v, n) in Figure 5.
A closed triplet is defined as three vertices in which
there are three edges, or Figure 5’s triplet (i, v, j). A
triangle is made up of three closed triplets, one for
each vertex of the triangle.

The global clustering coefficient C is a single num-
ber describing the number of closed triplets over the
total number of triplets,

C =
number of closed triplets

number of triplets
. (3)

The local clustering coefficient Cv is defined simi-
larly for each vertex v,

Cv =
number of closed triplets around v

number of triplets around v
. (4)

Let ek be the set of neighbors of vertex k, and let |e|
be the size of set e. Also let dv be the degree of v, or
dv = |ev|. We show how to compute Cv by expressing
it as

v

i

j

m

n

Fig. 5. There are two triplets around v in this un-
weighted, undirected graph. The triplet (m, v, n) is
open, there is no edge 〈m,n〉. The triplet (i, v, j) is
closed.

Cv =

∑
i∈ev |ei ∩ (ev \ {v})|

dv(dv − 1)
=

Tv
dv(dv − 1)

. (5)

For the remainder of this section, we concentrate on
the calculation of local clustering coefficients. Com-
puting the global clustering coefficient requires an
additional sum reduction over the numerators and
denominators.

Our test data is generated by sampling from a
Kronecker product using the RMAT recursive matrix
generator [24] with probabilities A = 0.55, B = 0.1,
C = 0.1, and D = 0.25. Each generated graph has
a few vertices of high degree and many vertices of
low degree. Given the RMAT scale k, the number of
vertices n = 2k, and an edge factor f , we generate
approximately f · n unique edges for our graph.

The clustering coefficients algorithm simply counts
all triangles. For each edge 〈u, v〉, we count the size
of the intersection |eu ∩ ev|. The algorithm runs in
O(
∑
v d

2
v) time where v ranges across the vertices and

the structure is pre-sorted. The multithreaded imple-
mentation also is straight-forward; we parallelize over
the vertices.

Figure 6 plots the scalability of the local clustering
coefficients implementation on the Cray XMT. On an
undirected, synthetic RMAT graph with over 16 mil-
lion vertices and 135 million edges (left), we are able
to calculate all clustering coefficients in 87 minutes on
a single processor and 56 seconds on 128 processors.
The speed-up is 94x. Parallelizing over the vertices,
we obtain the best performance when instructing the
compiler to schedule the outer loop using futures.
The implementation scales almost linearly through 80
processors, then increases more gradually.

In the plot on the right, the same kernel is run on
the USA road network, a graph with 24 million ver-
tices and 58 million edges. The graph is nearly planar
with a small, uniform degree distribution. Because the
amount of work per vertex is nearly equal, the vertices
are easily scheduled and the algorithm scales linearly
to 128 processors. The total execution time is about 27
seconds.

These results highlight the challenges of developing
scalable algorithms on massive graphs. Where com-
modity platforms often struggle to obtain a speed-
up, the latency tolerance and massive multithreading
of the Cray XMT enables linear scalability on reg-
ular, uniform graphs. The discrepancy between the
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Fig. 6. Scalability of the local clustering coefficients kernel on the Cray XMT. On the left, the input graph is an
undirected RMAT generated graph with approximately 16 million vertices and 135 million edges. The speedup
is 94x on 128 processors. On the right, the input graph is the USA road network with 24 million vertices and 58
million edges. The speedup is 120x on 128 processors. Execution times in seconds are shown in blue.

RMAT scalability (left) and the road network (right)
is an artifact of the power law degree distribution of
the former. Despite the complex and irregular graph
topology, GraphCT is still able to scale up to 128
processors.

There are several variations of clustering coeffi-
cients for directed graphs. A straightforward ap-
proach is to apply the definition directly and count the
number of triangles, where a triangle now requires six
edges instead of three. A more sophisticated approach
is called the transitivity coefficients. Transitivity coef-
ficients counts the number of transitive triplets in the
numerator. A transitive triplet is one in which edges
exist from vertex a to vertex b and from vertex b to
vertex c, with a shortcut edge from vertex a to vertex
c [25].

Figure 7 plots the scalability of the transitivity
coefficients kernel on the Cray XMT. The input graph
is a directed RMAT graph with 16 million vertices
and 135 million edges. We do not use loop futures
to schedule the outer loop in this case. On a single
processor, the calculation requires 20 minutes. On 128
processors, the execution time is under 13 seconds.
The speed-up is 90x.

6 k-BETWEENESS CENTRALITY

Betweenness centrality has proved a useful analytic
for ranking important vertices and edges in large
graphs. As defined by Freeman in [26], betweenness
centrality is a measure of the number of shortest paths

Fig. 7. Scalability of the transitivity coefficients kernel
on the Cray XMT. The input graph is a directed RMAT
generated graph with approximately 16 million vertices
and 135 million edges. Execution times in seconds
are shown in blue. On 128 processors, we achieve a
speed-up of 90x.
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in a graph passing through a given vertex. For a graph
G(V,E), let σst denote the number of shortest paths
between vertices s and t, and σst(v) the count of
shortest paths that pass through a specified vertex v.
The betweenness centrality of v is defined as:

BC(v) =
∑

s6=v 6=t∈V

σst(v)

σst
(6)

Betweenness centrality can be used to identify crit-
ical vertices in a network. High centrality scores in-
dicate that a vertex lies on a considerable fraction of
shortest paths connecting pairs of vertices. This metric
has been applied extensively to the study of various
networks including biological networks [4], sexual
networks and the transmission of the AIDS virus [3],
identifying key actors in terrorist networks [27], orga-
nizational behavior, and transportation networks [28].

In earlier work, we contributed a lock-free parallel
algorithm for betweenness centrality [12]. In the re-
mainder of this section, we will motivate and present
an extension of Freeman’s betweenness centrality and
our previous algorithm. We generalize the definition
to include paths in the graph whose length is within
a specified value k of the length of the shortest path.
We extend our recent parallel, lock-free algorithm for
computing betweenness centrality to compute gener-
alized k-betweenness centrality scores. Next, we will
give details of an implementation of our new algo-
rithm on the massively multithreaded Cray XMT and
describe the performance effects of this extension in
terms of execution time and memory usage. Last, we
will compare the results of this algorithm on synthetic
and real-world datasets.

6.1 Extending Betweenness Centrality
The traditional definition of betweenness central-
ity [26] enumerates all shortest paths in a graph and
defines betweenness centrality in terms of the ratio of
shortest paths passing through a vertex v. This metric
has proven valuable for a number of graph analysis
applications, but fails to capture the robustness of
a graph. A vertex that lies on a number of paths
whose length is just one greater than the shortest path
receives no additional value compared to a vertex
with an equally large number of shortest paths, but
few paths of length one greater.

We will define k-betweenness centrality in the fol-
lowing manner. For an arbitrary graph G(V,E), let
d(s, t) denote the length of the shortest path between
vertices s and t. We define σstk to be the number of
paths between s and t whose length is less than or
equal to d(s, t) + k. Likewise, σstk(v) is the count of
the subset of these paths that pass through vertex v.
Therefore, k-betweenness centrality is given by:

BCk(v) =
∑

s6=v 6=t∈V

σstk(v)

σstk
(7)

This definition of k-betweenness centrality sub-
sumes Freeman’s definition of betweenness centrality
for k = 0.

6.2 A Parallel Algorithm for k-Betweenness Cen-
trality

Brandes offered the first algorithm for comput-
ing betweenness in O(mn) time for an unweighted
graph [29]. Madduri and Bader developed a par-
allel betweenness algorithm motivated by Brandes’
approach that exploits both coarse- and fine-grained
parallelism in low-diameter graphs in [30] and im-
proved the performance of this algorithm using lock-
free methods in [12]. Here we extend the latter work
to incorporate our new analytic of k-betweenness
centrality.

We define d(s, t) to be the length of the shortest
path between s and t. Paths must be acyclic and
directed outwards from the source vertex. Let τstk be
the number of paths between s and t with length
equal to exactly d(s, t) + k, and let τstk(v) be the
number of these paths that pass through vertex v.
Then, τstk(v) is given by:

τstk(v) =

k∑
i=0

τsvi · τvtk−i
(8)

Clearly, for k = 0 (where τst0 = σst0 by definition),
we have reproduced the original value of σst(v) from
Brandes where d(s, t) ≥ d(s, v) + d(v, t) (the Bellman
criterion).

The k-betweenness centrality of vertex v may be
obtained by summing the pair-dependencies for that
vertex:

BCk(v) =

k∑
i=0

∑
s 6=v 6=t∈V

δstk(v) (9)

δstk(v) is given by the ratio of the number of paths
whose length is equal to d(s, t) + k passing through
vertex v over the total count of the paths of length
less than or equal to d(s, t) + k between s and t:

δstk(v) =
τstk(v)

σstk
(10)

In his work, Brandes derives a recursive relation for
the dependence of s on any other vertex v in the graph.
Likewise, we have derived the general expression for
any path length k greater than the shortest path. We
define ∆D(w, v) as d(s, v)− d(s, w) + 1, where s is the
source vertex and w is a neighbor of v. ∆D is bounded
by k for neighbors lying on a +k−path in which we
are interested. We define δsk(v), the dependenc of s
on v through paths of length d(s, t) + k, to be:

δsk(v) =
∑

t∈V,t6=s

δstk(v) (11)
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Fig. 8. A level-synchronous parallel algorithm for
computing k-betweenness centrality of vertices in un-
weighted graphs.
Input: G(V,E), k
Output: kBC[1..n], where kBC[v] gives the k-

centrality score (BCk(v)) for vertex v
1: for all v ∈ V in parallel do
2: kBC[v]← 0

3: for all s ∈ V do
I. Initialization

4: for all t ∈ V in parallel do d[t]← −1
5: for 0 ≤ i ≤ k in parallel do
6: Succ[i][t]← empty multiset, τ [i][t]← 0,
7: τ [0][s]← 1, d[s]← 0
8: phase← 0, S[phase]← empty stack
9: push s→ S[phase]

Fig. 9. Part II - Graph traversal for shortest path
discovery and counting

1: count← 1
2: while count > 0 do
3: count← 0
4: for all v ∈ S[phase] in parallel do
5: for each neighbor w of v in parallel do
6: if d[w] < 0 then
7: push w → S[phase+ 1]
8: count← count+ 1
9: d[w]← d[v] + 1

10: ∆D = d[v]− d[w] + 1
11: if ∆D ≤ min(k, 1) then
12: τ [∆D][w]← τ [∆D][w] + τ [0][v]

13: if ∆D ≤ k then
14: append w → Succ[∆D][v]

15: phase← phase+ 1

16: for 1 ≤ i ≤ k do
17: for 0 ≤ p < phase do
18: for all v ∈ S[p] in parallel do
19: for all w ∈ Succ[0][v] in parallel do
20: τ [i][w]← τ [i][w] + τ [i][v]

21: if i < k then
22: for 0 < j ≤ i+ 1 in parallel do
23: for all w ∈ Succ[j][v] in parallel do
24: τ [i+ 1][w] = τ [i+ 1][w] + τ [i+ 1− j][v]

BCk(v) =
k∑
i=0

∑
s∈V

δsk(v) (12)

It follows that BCk(v) can be directly calculated
from a sum of these dependence values. For the
complete details of the derivation of k-betweenness
centrality, please refer to the original paper [13].

An algorithm for k-betweenness centrality is given
in Figures 8, 9, and 10. In the first stage we calculate
τsvk , ∀ v, k from a particular source vertex s. Then we

Fig. 10. Part III - Dependency accumulation by back-
propagation

1: phase← phase− 1
2: δ[i][t]← 0 ∀ t ∈ V, 0 ≤ i ≤ k
3: for 0 ≤ k′ ≤ k do
4: p← phase
5: while p > 0 do
6: for all v ∈ S[p] in parallel do
7: for 0 ≤ d ≤ k′ in parallel do
8: for all w ∈ Succ[d][v] in parallel do
9: for 0 ≤ i ≤ k′ − d do

10: sum← 0
11: e← k′ − d− i
12: for 0 ≤ j ≤ e do
13: sum← sum+W (e− j, e, w, τ)∗τ [j][v]

14: δ[k′][v]← δ[k′][v] + sum ∗ δ[i][w]
τ [0][w]e+1

15: δ[k′][v]← δ[k′][v] + τ [k′−d][v]
Σiτ [i][w]

16: kBC[v]← kBC[v] + δ[k′][v]

17: p← p− 1

use these τ values to recursively calculate the δsk(v), ∀
v, k. The first stage uses breadth-first search to traverse
the graph. In the second stage, we traverse the graph
in reverse order from which it was explored during
the search stage. We repeat this for each source vertex
s and sum the δ values for each vertex v to obtain the
BCk value.

We must modify the graph traversal phase from our
previous work [12] in order to correctly propagate
values of τstk . When k = 0, a single breadth-first is
needed to propagate the value of τ from one level to
the next. For k > 0, we must do k + 1 breadth-first
searches. Notice that when we are updating τ values,
for neighbors on the next level in the breadth-first
search, we have τswi = τsvi , ∀ i, based on our general-
ized Bellman criterion. We must also increment the τ
values for neighbors in the current or previous levels
of the search. This may be challenging, since these
neighbors then also need to pass on these values to
their neighbors.

We solve this issue by only passing on different
levels of τ to forward vertices and to those that are
behind the breadth-first search frontier. Specifically,
the forward propagation always trails the backward
propagation by one level. For example, in the first
step, we calculate and forward-propagate τ0 and back-
propagate τ1. See Figure 11 for an illustration of this
process.

We back-propagate τk to neighbors of the current
vertex with appropriate ∆D and that have already
been explored. We forward-propagate τk to neighboring
vertices on the shortest path that we discover during
the breadth-first search. During the first breadth-first
search we store k+1 successor (or child) arrays. When
we find a neighbor during breadth-first search whose
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Fig. 11. Illustration of τ propagation in the k = 2 case. Shown is a segment of the breadth-first search. The
table represents the ∆D value as well as the propagation occurring as the result of each edge. The color of the
τ propagation represents in which stage that addition will occur.

∆D ≤ k, we append that neighbor’s index to the
∆Dth successor array.

We need not re-run the breadth-first search after
the first time; in a level-synchronous fashion, we may
directly scan the successor arrays to perform our
propagation, avoiding contention on a common vertex
queue. We exploit parallelism in the traversal by
exploring the neighbors of the current level of vertices
concurrently. For a small-world graph, where graph
diameter is small, the number of levels in the breadth-
first search is correspondingly small, and parallelism
is high. In the first traversal, all the vertices must add
newly discovered vertices to an atomically accessed
queue, which is the main bottleneck in the search.
Since that work is done in the first phase, subsequent
searches do not rely on this queue and avoid the
sequential bottleneck to their parallelism.

For the δ−accumulation step, we start by perform-
ing shortest-path accumulation as in Brandes’s origi-
nal algorithm. The δ0 values are used in the backward
traversal to recursively calculate δ1, and so on and so
forth.

6.3 Computing k-Betweenness on the Cray XMT
The Cray XMT implementation is similar to that used
in previous work [12]. The successor arrays allows
us to update our δ−values without locking. The op-
timizations in our code for k−betweenness centrality
exploit the fact that we are mostly interested in small
values of k. In Figure 10, there are several nested
loops, however most of them are very simple for small
k and unfurl quickly. By manually coding these loops
for smaller values of k′, we significantly reduce the

execution time since the time to set up and iterate over
the small number of loop iterations quickly outstrips
the actual useful work inside of them. For a SCALE
20 RMAT (Recursive MATrix graph generator [24])
graph (having 220 vertices and 223 edges), the time
to compute 1-betweenness drops by a factor of two
with this optimization.

In addition to optimizing for lower loop iterations,
other considerations were taken for this architecture.
Initially, temporary arrays were kept to store the
number of children accumulated for a particular ver-
tex during graph traversal. These temporary arrays
required concurrent dynamic memory allocation. We
were able to eliminate dynamic memory allocation
altogether by accessing the source arrays directly, at
the cost of addressing the larger array repeatedly.
Reorganizing memory accesses to avoid dynamic al-
location within the loop reduced runtime by more
than 75%. Since the system has a large memory, we
are encouraged to utilize extra memory in lieu of
performing extra calculations (as long as we have suf-
ficient network bandwidth): the expression Σiτ [i][w]
in Figure 10 is precomputed and stored in an array
for all values of w.

In Figure 12 we show the parallel scaling of our
optimized code on the 128-processor Cray XMT. We
reduced the execution time from several hours down
to a few minutes for this problem. To accommo-
date the more than 12,000 hardware thread contexts
available on this machine, we run multiple breadth-
first searches in parallel and instruct the compiler
to schedule main loop iterations using loop futures.
This is necessary since each breadth-first search is
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Fig. 12. Parallel scaling on the Cray XMT, for an RMAT
generated undirected graph with approximately 16 mil-
lion vertices and 135 million edges. Scaling is nearly
linear up to 96 processors and speedup is roughly 78
on all 128 processors. k = 1 with 256 random sources
(single node time 318 minutes). Execution times in
seconds shown in blue.

dependent upon a single vertex queue that is accessed
atomically and quickly becomes a hotspot. By doing
so, however, the memory footprint is multiplied by
the number of concurrent searches. On 128 proces-
sors, a graph with 135 million edges takes about 226
seconds to run for k = 1 approximate betweenness.
This approximation is based on selecting a random
sample of source vertices s. For these experiments,
the number of starting vertices is 256. The plot shows
good scaling up to our machine size.

6.4 Evaluating k-Betweenness

In order to explore the effect of various values of
k on the calculation of k-betweenness centrality, we
apply our Cray XMT implementation to the ND-
www graph data set [31]. This graph represents the
hyperlink connections of web pages on the Internet. It
is a directed graph with 325,729 vertices and 1,497,135
edges. Its structure demonstrates a power-law distri-
bution in the number of neighbors. The graph dis-
plays characteristics typical of scale-free graphs found
in social networks, biological networks, and computer
networks.

To examine the graph data, we ran k-betweenness
centrality for k from 0 (traditional betweenness cen-
trality) to 2. The betweenness scores are compared for
each value of k. An analysis directly follows.

Percentile k = 1 k = 2
90th 513 683
95th 96 142
99th 11 12

Fig. 13. The number of vertices ranked in selected
percentiles for k = 1 and k = 2 whose betweenness
centrality score was 0 for k = 0 (traditional BC). There
were 14,320 vertices whose traditional BC score was
0, but whose BCk score for k = 1 was greater than
0. The ND-www graph contains 325,729 vertices and
1,497,135 edges.

Looking at the highest ranking vertices going from
k = 0 to k = 2, the subset of vertices and the relative
rankings change little. This seems to indicate that
the paths k longer than the shortest path lie along
the same vertices as the shortest paths in this graph.
As predicted, the traditional betweenness centrality
metric fails to capture all of the information in the
graph. When examining the BCk score for k > 0 of
vertices whose score for k = 0 was 0 (no shortest
paths pass through these vertices), it is clear that
a number of very important vertices in the graph
are not counted in traditional betweenness centrality.
For k = 1, 417 vertices are ranked in the top 10
percent, but received a score of 0 for k = 0. In the
99th percentile are 11 vertices. Likewise, 12 vertices
received a traditional BC score of 0, but ranked in
the top 1 percent for k = 2. Figure 14 shows 14,320
vertices whose betweenness centrality score for k = 0
was 0, but had a k-betweenness centrality score of
greater than 0 for k = 1.

Given that the execution time of this algorithm
grows exponentially with k, it is desirable to un-
derstand the effect of choosing a given value for k.
Figure 15 shows that increasing k from 0 to 1 captures
significantly more path data. However, increasing
from k = 1 to k = 2 displays much less change.
It is reasonable to believe that small values of k for
some applications may capture an adequate amount
of information while remaining computable.

The vertices that get overlooked by traditional
betweenness centrality, but are captured by k-
betweenness centrality, play an important role in the
network. They do not lie along any shortest paths,
but they lie along paths that are very close to the
shortest path. If an edge is removed that breaks one
or more shortest paths, these vertices would likely
become very central to the graph. The traditional
definition of betweenness centrality fails to capture
this subtle importance, but k-betweenness centrality
is more robust to noisy data and makes it possible to
identify these vertices.
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Fig. 14. Per-vertex betweenness centrality scores for
k = 0 (in black), 1 (in blue), and 2 (in red), sorted in
ascending order for k = 0 for the Notre Dame web
crawl dataset [31]. Note the number of vertices whose
score is several orders of magnitude larger for k = 1 or
2 than for traditional betweenness centrality.

Fig. 15. Per-vertex betweenness centrality scores for
k = 0, 1, and 2, sorted independently in ascending
order for each value of k.

7 CONCLUSION

The explosion of semantic data in digital form has
necessitated the development of algorithms and soft-
ware to gain even a first-order understanding of
the relationships at work. The computational and
storage requirements of large datasets has brought
about parallel, multithreaded supercomputers like the
Cray XMT. GraphCT incorporates multithreaded im-
plementations of cutting edge algorithms and tradi-
tional analytics. Running on the Cray XMT, we are
able to produce a summary analysis of an unknown
input graph with billions of vertices and edges in
several minutes to several hours; a task that would
be impossible on conventional multicore servers and
workstations.

The processing framework used in GraphCT en-
ables a series of complex analytics to run with the
option of passing the results of one to the input of
the next. A researcher with an unknown data source
is able to prepare a custom workflow of routines that
will produce a report on the graph characteristics. Our
tool has been used successfully in prior work [15]
to uncover hidden relationships in online social net-
works.

As the quantity and richness of data continues to
grow, algorithms must continue to evolve to handle
the scalability and complexity challenges. Now that
we are able to glean a first-order understanding our
input data, the challenge will be to engineer algo-
rithms and applications that can quickly reveal the
important structures and trends in today’s networks.
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