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Motivation: Ever Larger Ax = b

Systems Ax = b are growing larger, more difficult
Omega3P: n = 7.5 million with τ = 300 million entries

Quantum Mechanics: precondition with blocks of dimension
200-350 thousand

Large barrier-based optimization problems: Many solves, similar
structure, increasing condition number

Huge systems are generated, solved, and analyzed automatically.

Large, highly unsymmetric systems need scalable parallel solvers.

Low-level routines: No expert in the loop!

Use static pivoting to decouple symbolic, numeric phases.

Perturb the factorization and refine the solution to recover
accuracy.
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Sparse Matrix to Bipartite Graph to Pivots
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Bipartite model
Each row and column is a vertex.

Each explicit entry is an edge.

Want to chose “largest” entries for pivots.

Maximum weight complete bipartite matching:
linear assignment problem
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Mathematical Form

“Just” a linear optimization problem:

B n× n matrix of benefits in <∪ {−∞}, often c + log2 |A|
X n × n permutation matrix: the matching

pr , πc dual variables, will be price and profit

1r , 1c unit entry vectors corresponding to rows, cols

Lin. assignment prob.

maximize
X∈<n×n

Tr BT X

subject to X 1c = 1r ,

X T 1r = 1c , and

X ≥ 0.

Dual problem

minimize
pr ,πc

1T
r pr + 1T

c πc

subject to pr1T
c + 1rπ

T
c ≥ B .
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Mathematical Form

“Just” a linear optimization problem:

B n× n matrix of benefits in <∪ {−∞}, often c + log2 |A|
X n × n permutation matrix: the matching

pr , πc dual variables, will be price and profit

1r , 1c unit entry vectors corresponding to rows, cols

Lin. assignment prob.

maximize
X∈<n×n

Tr BT X

subject to X 1c = 1r ,

X T 1r = 1c , and

X ≥ 0.

Dual problem
Implicit form:

minimize
pr

1T
r pr

+
∑
j∈C

max
i∈R

(B(i , j)

− pr (j)).
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Do We Need a Special Method?

The LAP:

maximize
X∈<n×n

Tr BTX

subject to X1c = 1r ,

XT 1r = 1c , and

X ≥ 0.

Standard form:

minex c̃T x̃

subject to Ãx̃ = b̃, and

x̃ ≥ 0.

Ã: 2n × τ vertex-edge matrix

Network optimization kills simplex methods.
I (“Smoothed analysis” does not apply.)

Interior point needs to round the solution.
I (And needs to solve Ax = b for a much larger A.)

Combinatorial methods should be faster.
I (But unpredictable!)
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Properties from Optimization

Complementary slackness

X � (pr1T
c + 1rπ

T
c − B) = 0.

If (i , j) is in the matching (X (i , j) = 0), then
pr (i) + πc(j) = B(i , j).

Used to chose matching edges and modify dual variables in
combinatorial algorithms.

Jason Riedy (UCB) Distributed Auctions 17 Dec, 2008 7 / 28



Properties from Optimization

Relaxed problem
Introduce a parameter µ, two interpretations:

from a barrier function related to X ≥ 0, or

from the auction algorithm (later).

Then
Tr BT X ∗ ≤ 1T

r pr + 1T
c πc ≤ Tr BT X ∗ + (n − 1)µ,

or the computed dual value (and hence computed primal matching) is
within (n − 1)µ of the optimal primal.

Very useful for finding approximately optimal matchings.

Feasibility bound
Starting from zero prices:

pr (i) ≤ (n − 1)(µ+ finite range of B)

Jason Riedy (UCB) Distributed Auctions 17 Dec, 2008 8 / 28



Algorithms for Solving the LAP

Goal: A parallel algorithm that justifies buying big machines.
Acceptable: A distributed algorithm; matrix is on many nodes.

Choices
Simplex or continuous / interior-point

I Plain simplex blows up, network simplex difficult to parallelize.
I Rounding for interior point often falls back on matching.
I (Optimal IP algorithm: Goldberg, Plotkin, Shmoys, Tardos.

Needs factorization.)

Augmenting-path based (Mc64: Duff and Koster)
I Based on depth- or breadth-first search.
I Both are P-complete, inherently sequential (Greenlaw, Reif).

Auctions (Bertsekas, et al.)
I Only length-1 alternating paths; global sync for duals.
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Auction Algorithms

Discussion will be column-major.

General structure:
1 Each unmatched column finds the “best” row, places a bid.

F The dual variable pr holds the prices.
F The profit πc is implicit. (No significant FP errors!)
F Each entry’s value: benefit B(i , j)− price p(i).
F A bid maximally increases the price of the most valuable row.

2 Bids are reconciled.
F Highest proposed price wins, forms a match.
F Loser needs to re-bid.
F Some versions need tie-breaking; here least column.

3 Repeat.
F Eventually everyone will be matched, or
F some price will be too high.

Seq. implementation in ∼40–50 lines, can compete with Mc64

Some corner cases to handle. . .
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The Bid-Finding Loop

For each unmatched column:

value = entry − price
Save largest and second−largest
Bid price incr: diff. in values

Price

Row Index

Row Entry

Differences from sparse matrix-vector products
Not all columns, rows used every iteration.

Hence output price updates are scattered.

More local work per entry
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The Bid-Finding Loop

For each unmatched column:

value = entry − price
Save largest and second−largest
Bid price incr: diff. in values

Price

Row Index

Row Entry

Little points
Increase bid price by µ to avoid loops

I Needs care in floating-point for small µ.

Single adjacent row →∞ price
I Affects feasibility test, computing dual
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Termination

Once a row is matched, it stays matched.
I A new bid may swap it to another column.
I The matching (primal) increases monotonically.

Prices only increase.
I The dual does not change when a row is newly matched.
I But the dual may decrease when a row is taken.
I The dual decreases monotonically.

Subtle part: If the dual doesn’t decrease. . .
I It’s ok. Can show the new edge begins an augmenting path that

increases the matching or an alternating path that decreases the
dual.
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Successive Approximation (µ-scaling)

Complication #1
Simple auctions aren’t really competitive with Mc64.

Start with a rough approximation (large µ) and refine.

Called ε-scaling in the literature, but µ-scaling is better.

Preserve the prices pr at each step, but clear the matching.

Note: Do not clear matches associated with ∞ prices!

Equivalent to finding diagonal scaling DrADc and matching
again on the new B .

Problem: Performance strongly depends on initial scaling.

Also depends strongly on hidden parameters.

Jason Riedy (UCB) Distributed Auctions 17 Dec, 2008 13 / 28



Performance Varies on the Same Data!

Group Name realT intT real int
FEMLAB poisson3Db 0.014 0.014 0.014 0.013
GHS indef ncvxqp5 0.475 0.605 0.476 0.608
Hamm scircuit 0.058 0.018 0.058 0.031
Schenk IBMSDS bm matrix 2 1.446 2.336 1.089 1.367
Schenk IBMSDS matrix 9 4.955 6.453 3.091 5.401
Schenk ISEI barrier2-4 2.915 5.678 6.363 7.699
Zhao Zhao2 1.227 2.726 0.686 1.450
Vavasis av41092 5.417 5.172 4.038 6.220

Hollinger g7jac200 0.654 2.557 0.848 2.656
Hollinger g7jac200sc 0.356 1.505 0.371 0.410

On a Core 2, 2.133ghz. Note: Mc64 performance is in the same range.
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Setting / Lowering Parallel Expectations

Performance scalability?

Originally proposed (early 1990s) when
cpu speed ≈ memory speed ≈ network speed ≈ slow.

Now:
cpu speed � memory latency > network latency.

Latency dominates matching algorithms (auction and others).

Communication patterns are very irregular.

Latency (and software overhead) is not improving. . .

Scaled back goal
It suffices to not slow down much on distributed data.
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Basic Idea: Run Local Auctions, Treat as Bids
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Slice the matrix into pieces, run local auctions.

The winning local bids are the slices’ bids.

Merge. . . (“And then a miracle occurs. . .”)

Need to keep some data in sync for termination.
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Basic Idea: Run Local Auctions, Treat as Bids
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Can be memory scalable: Compact the local pieces.

Have not experimented with simple SMP version.
I Sequential performance is limited by the memory system.

Note: Could be useful for multicore w/local memory.
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Ring Around the Auction

Fits nodes-of-smp architectures well (Itanium2/Myrinet).

Needs O( largest # of rows ) data, may be memory scalable.

Initial, sparse matrices cannot be spread across too many
processors. . . (Below: At least 500 cols per proc.)

Auction

Number of Processors

S
pe

ed
up

5 10 15

2

4

6

8

●●

●

●

●
●

●
●

●

●

● ●

●●

●
● ● ●

●●

●

●
●

●

●●

●

●

● ●

●●

● ●

●

●

●

●

● ●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

● ●
●

● ●

●

●

●

●

●● ●

● ● ●

●
●

●
●

●

●

●

●

●
●

Auction v. root

Number of Processors

R
e−

sc
al

ed
 s

pe
ed

up

5 10 15

2

4

6

8

●●

●

●

●

●
●

●

●

● ●

●● ●●

●

●

●●

●

●
●

●

●●

●

●

● ●

●●

●

●

●

●

●

●

● ●

●
●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

On the Citris Itanium2 cluster with Myrinet.
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Other Communication Schemes

Blind all-to-all
Send all the bids to everyone.

A little slower than the ring.

May need O(# local rows · p) intermediate data; not memory
scalable.

Needs O(p) communication; not processor scalable

Tree reduction
Reduction operation: MPI MAXLOC on array of { price, column }.
Much slower than everything else.

Each node checks result, handles unmatching locally.

Needs O(n) intermediate data; not memory scalable.
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Diving in: Lessons from Examples

Three different matrices, four different perf. profiles.

All are for the ring style.

Only up to 16 processors; that’s enough to cause problems.

Performance dependencies:
I mostly the # of comm. phases, and
I a little on the total # of entries scanned along the critical path.

The latter decreases with more processors, as it must.

But the former is wildly unpredictable.
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Diving in: Example That Scales

Matrix Nemeth/nemeth22
n = 9 506, nent = 1 358 832

Entries roughly even across nodes.

This one is fast and scales.

But 8 processors is difficult to explain.

# Proc Time # Comm # Ent. Scanned
1 0.2676 0 839 482 003
2 0.0741 55 1 636 226 414
4 0.0307 20 412 509 573
8 0.0176 27 105 229 945

16 0.0153 21 27 770 769

On jacquard.nersc.gov, Opteron and Infiniband.
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Diving in: Example That Does Not Scale

Matrix GHS indef/ncvxqp5
n = 62 500, nent = 424 966

Entries roughly even across nodes.

This one is superlinear in the wrong sense.

# Proc Time # Comm # Ent. Scanned
1 0.910 0 989 373 986
2 1.128 65 370 1 934 162 133
4 2.754 63 228 1 458 840 434
8 15.924 216 178 748 628 941

16 177.282 1 353 734 96 183 742
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Diving in: Example That Confuses Everything

Matrix Vavasis/av41092
n = 41 092, nent = 16 839 024

Entries roughly even across nodes.

Performance ∼ # Comm

What?!?!

Not transposed:
# Proc Time # Comm # Ent. Scanned

1 9.042 0 1 760 564 335
2 5.328 24 248 2 094 140 729
4 6.218 57 553 1 742 989 035
8 15.480 209 393 1 109 156 585

16 68.908 675 635 321 907 160
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Diving in: Example That Confuses Everything

Matrix Vavasis/av41092
n = 41 092, nent = 16 839 024

Entries roughly even across nodes.

Performance ∼ # Comm

What?!?!

Transposed:
# Proc Time # Comm # Ent. Scanned

1 10.044 0 2 010 702 016
2 10.832 887 047 1 776 252 776
4 41.417 1 475 564 1 974 921 328
8 18.929 249 947 844 718 754

16 (forever)
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So What Happened?

Matrix av41092 has one large strongly connected component.
I (The square blocks in a Dulmage-Mendelsohn decomposition.)

The SCC spans all the processors.

Every edge in an SCC is a part of some complete matching.

Horrible performance from:
I starting along a non-max-weight matching,
I making it almost complete,
I then an edge-by-edge search for nearby matchings,
I requiring a communication phase almost per edge.

Conjecture: This type of performance land-mine will affect any
0-1 combinatorial algorithm.
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Improvements?

Rearranging deck chairs: few-to-few communication
I Build a directory of which nodes share rows: collapsed BBT .
I Send only to/from those neighbors.
I Minor improvement over MPI Allgatherv for a huge effort.
I Still too fragile to trust perf. results

Improving communication may not be worth it. . .
I The real problem is the number of comm. phases.
I If diagonal is the matching, everything is overhead.
I Or if there’s a large SCC. . .

Another alternative: Multiple algorithms at once.
I Run Bora Uçar’s alg. on one set of nodes, auction on another,

transposed auction on another, . . .
I Requires some painful software engineering.
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Forward-Reverse Auctions

Improving the algorithm
Forward-reverse auctions alternate directions.

Start column-major.

Once there has been some progress, but progress stops, switch
to row-major.

Switch back when stalled after making some progress.

Much less sensitive to initial scaling.

Does not need µ-scaling, so trivial cases should be faster.

But this require the transpose.
I Few-to-few communication very nearly requires the transpose

already. . .
I Later stages (symbolic factorization) also require some

transpose information. . .
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So, Could This Ever Be Parallel?

Doubtful?
For a given matrix-processor layout, constructing a matrix
requiring O(n) communication is pretty easy for combinatorial
algorithms.

I Force almost every local action to be undone at every step.
I Non-fractional combinatorial algorithms are too restricted.

Using less-restricted optimization methods is promising, but far
slower sequentially.

I Existing algs (Goldberg, et al.) are PRAM with n3 processors.
I General purpose methods: Cutting planes, successive SDPs
I Someone clever might find a parallel rounding algorithm.
I Solving the fractional LAP quickly would become a matter of

finding a magic preconditioner. . .
I Maybe not a good thing for a direct method?
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So, Could This Ever Be Parallel?

Another possibility?
If we could quickly compute the dual by scaling. . .

Use the complementary slackness condition to produce a much
smaller, unweighted problem.

Solve that on one node?

May be a practical alternative.
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Questions?

(I’m currently working on an Octave-based, parallel forw/rev auction
to see if it may help...)
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