# Auctions for Distributed (and Possibly Parallel) Matchings

E. Jason Riedy jason@acm.org<sup>1</sup>

EECS Department University of California, Berkeley

17 December, 2008

<sup>1</sup>Thanks to FBF for funding this CERFACS visit. ( )

Jason Riedy (UCB)

Distributed Auctions

17 Dec, 2008 1 / 28

## Outline

#### Introduction

- 2 Linear Assignment Problem (LAP): Mathematical Form
- 3 Auction Algorithms
- Distributed Auctions
- Prospects for Parallel Matching

## Motivation: Ever Larger Ax = b

Systems Ax = b are growing larger, more difficult

- Omega3P: n = 7.5 million with  $\tau = 300$  million entries
- Quantum Mechanics: precondition with blocks of dimension 200-350 thousand
- Large barrier-based optimization problems: Many solves, similar structure, increasing condition number
- Huge systems are generated, solved, and analyzed automatically.
- Large, highly unsymmetric systems need scalable parallel solvers.
- Low-level routines: No expert in the loop!
- Use *static pivoting* to decouple symbolic, numeric phases.
- *Perturb* the factorization and *refine* the solution to recover accuracy.

## Sparse Matrix to Bipartite Graph to Pivots



#### Bipartite model

- Each row and column is a vertex.
- Each *explicit entry* is an edge.
- Want to chose "largest" entries for pivots.
- Maximum weight complete bipartite matching:

linear assignment problem

Jason Riedy (UCB)

Distributed Auctions

### Mathematical Form

"Just" a linear optimization problem: *B n* × *n* matrix of *benefits* in ℜ ∪ {−∞}, often *c* + log<sub>2</sub> |*A X n* × *n* permutation matrix: the matching *p<sub>r</sub>*, π<sub>c</sub> dual variables, will be price and profit 1<sub>r</sub>, 1<sub>c</sub> unit entry vectors corresponding to rows, cols

| Lin. assignment prob.                                                                                                                                                                          | Dual problem                                                                                                                                   |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------|--|
| $\begin{array}{ll} \underset{X \in \Re^{n \times n}}{\text{maximize}} & \operatorname{Tr} B^T X\\ \text{subject to} & X 1_c = 1_r, \\ & X^T 1_r = 1_c, \text{ and} \\ & X \geq 0. \end{array}$ | $\begin{array}{ll} \underset{p_r,\pi_c}{\text{minimize}} & 1_r^T p_r + 1_c^T \pi_r \\ \text{subject to} & p_r 1_c^T + 1_r \pi_c^T \end{array}$ |  |

> B.

### Mathematical Form

"Just" a linear optimization problem:  $B \ n \times n$  matrix of *benefits* in  $\Re \cup \{-\infty\}$ , often  $c + \log_2 |A|$   $X \ n \times n$  permutation matrix: the matching  $p_r, \pi_c$  dual variables, will be price and profit  $1_r, 1_c$  unit entry vectors corresponding to rows, cols



## Do We Need a Special Method?

| The LAP:                        |                           | Standard form:                                                  |
|---------------------------------|---------------------------|-----------------------------------------------------------------|
| $\max_{X \in \Re^{n \times n}}$ | $\operatorname{Tr} B^T X$ | $\min_{\widetilde{x}}  \widetilde{c}^T \widetilde{x}$           |
| subject to                      | $X1_c = 1_r,$             | subject to $\widetilde{A}\widetilde{x}=\widetilde{b},	ext{and}$ |
|                                 | $X^T 1_r = 1_c$ , and     | $\widetilde{x} \geq 0.$                                         |
|                                 | $X \ge 0.$                | $\widetilde{A}$ : 2 <i>n</i> × $\tau$ vertex-edge matrix        |

- Network optimization kills simplex methods.
  - ("Smoothed analysis" does not apply.)
- Interior point needs to round the solution.
  - (And needs to solve Ax = b for a *much* larger A.)
- Combinatorial methods should be faster.
  (But unpredictable!)

### Properties from Optimization

Complementary slackness

$$X \odot (p_r \mathbf{1}_c^T + \mathbf{1}_r \pi_c^T - B) = 0.$$

- If (i,j) is in the matching (X(i,j) = 0), then  $p_r(i) + \pi_c(j) = B(i,j)$ .
- Used to chose matching edges and modify dual variables in combinatorial algorithms.

(人間) トイヨト イヨト

## Properties from Optimization

#### Relaxed problem

Introduce a parameter  $\mu$ , two interpretations:

- from a barrier function related to  $X \ge 0$ , or
- from the auction algorithm (later).

Then

$$\operatorname{Tr} B^{\mathsf{T}} X^* \leq \mathbf{1}_r^{\mathsf{T}} p_r + \mathbf{1}_c^{\mathsf{T}} \pi_c \leq \operatorname{Tr} B^{\mathsf{T}} X^* + (n-1)\mu,$$

or the computed dual value (and hence computed primal matching) is within  $(n-1)\mu$  of the optimal primal.

• Very useful for finding approximately optimal matchings.

#### Feasibility bound

Starting from zero prices:

$$p_r(i) \leq (n-1)(\mu + \text{finite range of } B)$$

## Algorithms for Solving the LAP

Goal: A parallel algorithm that justifies buying big machines. Acceptable: A distributed algorithm; matrix is on many nodes.

#### Choices

- Simplex or continuous / interior-point
  - Plain simplex blows up, network simplex difficult to parallelize.
  - Rounding for interior point often falls back on matching.
  - (Optimal IP algorithm: Goldberg, Plotkin, Shmoys, Tardos. Needs factorization.)
- Augmenting-path based (MC64: Duff and Koster)
  - Based on depth- or breadth-first search.
  - Both are *P*-complete, *inherently* sequential (Greenlaw, Reif).
- Auctions (Bertsekas, et al.)
  - Only length-1 alternating paths; global sync for duals.

## Auction Algorithms

- Discussion will be column-major.
- General structure:
  - Each unmatched column finds the "best" row, places a bid.
    - The dual variable  $p_r$  holds the prices.
    - The profit  $\pi_c$  is implicit. (No significant FP errors!)
    - Each entry's value: benefit B(i,j) price p(i).
    - A bid maximally increases the price of the most valuable row.
  - Bids are reconciled.
    - + Highest proposed price wins, forms a match.
    - Loser needs to re-bid.
    - Some versions need tie-breaking; here least column.
  - 8 Repeat.
    - Eventually everyone will be matched, or
    - some price will be too high.
- $\bullet\,$  Seq. implementation in  ${\sim}40\text{--}50$  lines, can compete with  $M{\rm C}64$
- Some corner cases to handle...

## The Bid-Finding Loop

For each unmatched column:

![](_page_11_Figure_2.jpeg)

#### Differences from sparse matrix-vector products

- Not all columns, rows used every iteration.
- Hence output price updates are scattered.
- More local work per entry

## The Bid-Finding Loop

For each unmatched column:

![](_page_12_Figure_2.jpeg)

#### Little points

- $\bullet\,$  Increase bid price by  $\mu$  to avoid loops
  - Needs care in floating-point for small  $\mu$ .
- Single adjacent row  $\rightarrow \infty$  price
  - Affects feasibility test, computing dual

### Termination

• Once a row is matched, it stays matched.

A new bid may swap it to another column.

The matching (primal) increases monotonically.

#### • Prices only increase.

- The dual does not change when a row is newly matched.
- But the dual may decrease when a row is taken.
- The dual decreases monotonically.
- Subtle part: If the dual doesn't decrease...
  - It's ok. Can show the new edge begins an augmenting path that increases the matching or an alternating path that decreases the dual.

## Successive Approximation ( $\mu$ -scaling)

#### Complication #1

- $\bullet$  Simple auctions aren't really competitive with  $\rm Mc64.$
- Start with a rough approximation (large  $\mu$ ) and refine.
- Called  $\epsilon\text{-scaling}$  in the literature, but  $\mu\text{-scaling}$  is better.
- Preserve the prices  $p_r$  at each step, but clear the matching.
- Note: Do not clear matches associated with  $\infty$  prices!
- Equivalent to finding diagonal scaling  $D_rAD_c$  and matching again on the new B.
- Problem: Performance strongly depends on initial scaling.
- Also depends strongly on hidden parameters.

(日) (同) (三) (三)

## Performance Varies on the Same Data!

| Group           | Name        | $real^{\mathcal{T}}$ | $int^{\mathcal{T}}$ | real  | int   |
|-----------------|-------------|----------------------|---------------------|-------|-------|
| FEMLAB          | poisson3Db  | 0.014                | 0.014               | 0.014 | 0.013 |
| $GHS_indef$     | ncvxqp5     | 0.475                | 0.605               | 0.476 | 0.608 |
| Hamm            | scircuit    | 0.058                | 0.018               | 0.058 | 0.031 |
| $Schenk_IBMSDS$ | bm_matrix_2 | 1.446                | 2.336               | 1.089 | 1.367 |
| $Schenk_IBMSDS$ | matrix_9    | 4.955                | 6.453               | 3.091 | 5.401 |
| $Schenk_ISEI$   | barrier2-4  | 2.915                | 5.678               | 6.363 | 7.699 |
| Zhao            | Zhao2       | 1.227                | 2.726               | 0.686 | 1.450 |
| Vavasis         | av41092     | 5.417                | 5.172               | 4.038 | 6.220 |
| Hollinger       | g7jac200    | 0.654                | 2.557               | 0.848 | 2.656 |
| Hollinger       | g7jac200sc  | 0.356                | 1.505               | 0.371 | 0.410 |

On a Core 2, 2.133 $_{\rm GHz}$ . Note: Mc64 performance is in the same range.

## Setting / Lowering Parallel Expectations

#### Performance scalability?

 Originally proposed (early 1990s) when cpu speed ≈ memory speed ≈ network speed ≈ slow.

• Now:

cpu speed  $\gg$  memory *latency* > network *latency*.

- Latency dominates matching algorithms (auction and others).
- Communication patterns are very irregular.
- Latency (and software overhead) is not improving...

#### Scaled back goal

It suffices to not slow down much on distributed data.

イロト イヨト イヨト

### Basic Idea: Run Local Auctions, Treat as Bids

![](_page_17_Picture_1.jpeg)

- Slice the matrix into pieces, run local auctions.
- The winning local bids are the slices' bids.
- Merge... ("And then a miracle occurs...")
- Need to keep some data in sync for termination.

### Basic Idea: Run Local Auctions, Treat as Bids

![](_page_18_Picture_1.jpeg)

- Can be *memory scalable*: Compact the local pieces.
- Have not experimented with simple SMP version.
  - Sequential performance is limited by the memory system.
- Note: Could be useful for multicore w/local memory.

### Ring Around the Auction

- Fits nodes-of-SMP architectures well (Itanium2/Myrinet).
- Needs O( largest # of rows ) data, may be memory scalable.
- Initial, sparse matrices cannot be spread across too many processors... (Below: At least 500 cols per proc.)

![](_page_19_Figure_4.jpeg)

On the CITRIS Itanium2 cluster with Myrinet.

Jason Riedy (UCB)

## Other Communication Schemes

#### Blind all-to-all

- Send all the bids to everyone.
- A little slower than the ring.
- May need  $O(\# \text{ local rows} \cdot p)$  intermediate data; not *memory scalable*.
- Needs O(p) communication; not processor scalable

#### Tree reduction

- Reduction operation: MPI\_MAXLOC on array of { price, column }.
- Much slower than everything else.
- Each node checks result, handles unmatching locally.
- Needs O(n) intermediate data; not memory scalable.

Image: A match a ma

- Three different matrices, four different perf. profiles.
- All are for the ring style.
- Only up to 16 processors; that's enough to cause problems.
- Performance dependencies:
  - mostly the # of comm. phases, and
  - a little on the total # of entries scanned along the critical path.
- The latter decreases with more processors, as it must.
- But the former is wildly unpredictable.

## Diving in: Example That Scales

#### Matrix Nemeth/nemeth22

- n = 9506, nent = 1358832
- Entries roughly even across nodes.
- This one is fast and scales.
- But 8 processors is difficult to explain.

| # Proc | Time   | # Comm | # Ent. Scanned |
|--------|--------|--------|----------------|
| 1      | 0.2676 | 0      | 839 482 003    |
| 2      | 0.0741 | 55     | 1 636 226 414  |
| 4      | 0.0307 | 20     | 412 509 573    |
| 8      | 0.0176 | 27     | 105 229 945    |
| 16     | 0.0153 | 21     | 27 770 769     |

On jacquard.nersc.gov, Opteron and Infiniband.

## Diving in: Example That Does Not Scale

#### Matrix GHS\_indef/ncvxqp5

- *n* = 62 500, *nent* = 424 966
- Entries roughly even across nodes.
- This one is superlinear in the wrong sense.

| # Proc | Time    | # Comm    | # Ent. Scanned |
|--------|---------|-----------|----------------|
| 1      | 0.910   | 0         | 989 373 986    |
| 2      | 1.128   | 65 370    | 1 934 162 133  |
| 4      | 2.754   | 63 228    | 1458840434     |
| 8      | 15.924  | 216 178   | 748 628 941    |
| 16     | 177.282 | 1 353 734 | 96 183 742     |

## Diving in: Example That Confuses Everything

#### Matrix Vavasis/av41092

- *n* = 41 092, *nent* = 16 839 024
- Entries roughly even across nodes.
- Performance  $\sim \#$  Comm

• What?!?!

#### Not transposed:

| $\# \operatorname{Proc}$ | Time   | # Comm  | # Ent. Scanned |
|--------------------------|--------|---------|----------------|
| 1                        | 9.042  | 0       | 1 760 564 335  |
| 2                        | 5.328  | 24 248  | 2 094 140 729  |
| 4                        | 6.218  | 57 553  | 1 742 989 035  |
| 8                        | 15.480 | 209 393 | 1 109 156 585  |
| 16                       | 68.908 | 675 635 | 321 907 160    |

過す イヨト イヨト

## Diving in: Example That Confuses Everything

#### Matrix Vavasis/av41092

- *n* = 41 092, *nent* = 16 839 024
- Entries roughly even across nodes.
- Performance  $\sim \#$  Comm
- What?!?!

#### **Transposed:** # Comm # Ent. Scanned # Proc Time 2010702016 10.044 0 1 2 10.832 887 047 1776 252 776 4 41.417 1475 564 1974921328 8 18.929 249 947 844718754 (forever) 16

(日) (周) (三) (三)

## So What Happened?

- Matrix av41092 has one large strongly connected component.
  (The square blocks in a Dulmage-Mendelsohn decomposition.)
- The SCC spans all the processors.
- Every edge in an SCC is a part of some complete matching.
- Horrible performance from:
  - starting along a non-max-weight matching,
  - making it almost complete,
  - then an edge-by-edge search for nearby matchings,
  - requiring a communication phase almost per edge.
- Conjecture: This type of performance land-mine will affect any 0-1 combinatorial algorithm.

#### Improvements?

• Rearranging deck chairs: few-to-few communication

- Build a directory of which nodes share rows: collapsed  $BB^{T}$ .
- Send only to/from those neighbors.
- Minor improvement over MPI\_Allgatherv for a huge effort.
- Still too fragile to trust perf. results
- Improving communication may not be worth it...
  - The real problem is the number of comm. phases.
  - If diagonal is the matching, everything is overhead.
  - Or if there's a large SCC...
- Another alternative: Multiple algorithms at once.
  - Run Bora Uçar's alg. on one set of nodes, auction on another, transposed auction on another, ...
    - Requires some painful software engineering.

## Forward-Reverse Auctions

#### Improving the algorithm

Forward-reverse auctions alternate directions.

- Start column-major.
- Once there has been some progress, but progress stops, switch to row-major.
- Switch back when stalled after making some progress.
- Much less sensitive to initial scaling.
- Does not need  $\mu$ -scaling, so *trivial* cases should be faster.
- But this require the transpose.
  - Few-to-few communication very nearly requires the transpose already...
  - Later stages (symbolic factorization) also require some transpose information...

## So, Could This Ever Be Parallel?

#### Doubtful?

- For a given matrix-processor layout, constructing a matrix requiring O(n) communication is pretty easy for combinatorial algorithms.
  - Force almost every local action to be undone at every step.
  - Non-fractional combinatorial algorithms are too restricted.
- Using less-restricted optimization methods is promising, but far slower sequentially.
  - Existing algs (Goldberg, *et al.*) are PRAM with  $n^3$  processors.
  - General purpose methods: Cutting planes, successive SDPs
  - Someone clever *might* find a parallel rounding algorithm.
  - Solving the fractional LAP quickly would become a matter of finding a magic preconditioner...
  - Maybe not a good thing for a direct method?

#### Another possibility?

- If we could quickly compute the dual by scaling...
- Use the complementary slackness condition to produce a much smaller, unweighted problem.
- Solve that on one node?
- May be a practical alternative.

#### Questions?

(I'm currently working on an Octave-based, parallel forw/rev auction to see if it may help...)