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Use Sparse Matriz Optimizations...

» Take a fixed, simple algorithm: Auction alg. for matchings
> Repeated iterations over a sparse graph.

» What's expensive, and is there anything we can do about it?
> Take an idea from optimizing sparse matrix-vector products.

» A little speed-up in some cases, but there are more ideas
available...



Where’s the Time Going?

Auction algorithm: lterative, greedy algorithm bipartite matching:
1. An unmatched row i finds a “most

profitable” column j
> (i) = max; b(i.j) — p(i)
2. Row i places a bid for column j.
» Bid price raised until j is no longer the best
choice. (Min. increment p)

3. Highest bid gets the matching (i, ).
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Time linear in entries examined...

of entries examined is problem-dependent.
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Ezxpensive Inner Loop!
1.3 GHz Itanium 2
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Verifying...

Using kcachegrind (N.Nethercote and J.Weidendorfer) and valgrind
(J. Seward).
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And Locating...

No obvious culprits in the instructions...

5] 462 intj=ind[k];

i1 462 double g = entlk];

f double p=pricef;

3

AE__ 1387 val=e-p;

]

1F__] 9254 if fval == hest_val_1) continue;




And Locating...

But considering cache effects!
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IF_J16.62 val=e-p;
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Auction’s Inner Loop

Index

Entry .

value = entry - price
save largest...



Auction’s Inner Loop

Same accesses as sparse matrix-vector multiplication!

Index

Entry .

y += a(i,j) * x(j)



Performance Through Blocking?

3 x 3 Register Blocking Example
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Performance Through Blocking?

3x 3 Register Blocking Example
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More entries, but 1.5x performance on Pentium 3!
(Images swiped from Berkeley's BeBOP group.)



Blocking Speeds Some Matches

Finite element matrix from Vavasis (in UF collection):

2 x
nz = 1683902



col block size

Blocking Speeds Some Matches

Speed-up for blocking av41092
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Blocking Speeds Some Matches

Fill from blocking av41092

row block size



Observations

A blocked graph data structure may provide additional
performance if:

» you iterate over whole rows,
» the graph / matrix has runs of columns, and
» you're willing to use an automated tuning system.

Maximizing the runs: linear arrangement. Hard, but there may be
cheap heuristics. Only worth-while if you're performing many
iterations. (For mat-vec, often > 50 computations of Ax.)



