
Sparse Data Structures for Weighted Bipartite
Matching

E. Jason Riedy
Dr. James Demmel

(. . . and thanks to the BeBOP group)

SIAM Workshop on Combinatorial Scientific Computing 2004



Use Sparse Matrix Optimizations...

I Take a fixed, simple algorithm: Auction alg. for matchings
I Repeated iterations over a sparse graph.

I What’s expensive, and is there anything we can do about it?
I Take an idea from optimizing sparse matrix-vector products.

I A little speed-up in some cases, but there are more ideas
available...



Where’s the Time Going?

Auction algorithm: Iterative, greedy algorithm bipartite matching:
1. An unmatched row i finds a “most

profitable” column j
I π(i) = maxj b(i , j)− p(i)

2. Row i places a bid for column j .
I Bid price raised until j is no longer the best

choice. (Min. increment µ)

3. Highest bid gets the matching (i , j).



Time linear in entries examined...
Number of entries examined is problem-dependent.

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

0 5e+06 1e+07 1.5e+07 2e+07 2.5e+07 3e+07

ti
m

e
(s

)

number of entries examined



Expensive Inner Loop!

1.3 GHz Itanium 2

0

2

4

6

8

10

100 150 200 250 300 350 400 450

cycles per entry



Verifying...
Using kcachegrind (N.Nethercote and J.Weidendorfer) and valgrind
(J. Seward).



And Locating...

No obvious culprits in the instructions...



And Locating...

But considering cache effects!



Auction’s Inner Loop

Same accesses as sparse matrix-vector multiplication!

value = entry - price

save largest...

Entry

Index

Price



Auction’s Inner Loop

Same accesses as sparse matrix-vector multiplication!

Entry

Index

Price

y += a(i,j) * x(j)



Performance Through Blocking?

(Images swiped from Berkeley’s BeBOP group.)



Performance Through Blocking?

(Images swiped from Berkeley’s BeBOP group.)



Performance Through Blocking?

More entries, but 1.5× performance on Pentium 3!
(Images swiped from Berkeley’s BeBOP group.)



Blocking Speeds Some Matches
Finite element matrix from Vavasis (in UF collection):



Blocking Speeds Some Matches



Blocking Speeds Some Matches



Observations

A blocked graph data structure may provide additional
performance if:

I you iterate over whole rows,

I the graph / matrix has runs of columns, and

I you’re willing to use an automated tuning system.

Maximizing the runs: linear arrangement. Hard, but there may be
cheap heuristics. Only worth-while if you’re performing many
iterations. (For mat-vec, often > 50 computations of Ax .)


