Sparse Data Structures for Weighted Bipartite
Matching

E. Jason Riedy

Dr. James Demmel
(... and thanks to the BeBOP group)

SIAM Workshop on Combinatorial Scientific Computing 2004

Use Sparse Matriz Optimizations...

» Take a fixed, simple algorithm: Auction alg. for matchings
> Repeated iterations over a sparse graph.

» What's expensive, and is there anything we can do about it?
> Take an idea from optimizing sparse matrix-vector products.

» A little speed-up in some cases, but there are more ideas
available...

Where’s the Time Going?

Auction algorithm: lterative, greedy algorithm bipartite matching:
1. An unmatched row i finds a “most

profitable” column j
> (i) = max; b(i.j) — p(i)
2. Row i places a bid for column j.
» Bid price raised until j is no longer the best
choice. (Min. increment p)

3. Highest bid gets the matching (i,).

Number

time (s)

4.5
4
3.5
3
2.5
2
1.5
1
0.5
0

Time linear in entries examined...

of entries examined is problem-dependent.

T T T T o
L R _
— 8 —
b
L o> _
A2
&
& | | | | |
0 5e+06 le+07 1.5e+07 2e+07 2.5e4+07

number of entries examined

3e+07

Ezxpensive Inner Loop!
1.3 GHz Itanium 2

10 T T T T T T

1 Y I 1.

100 150 200 250 300 350 400 450

cycles per entry

Verifying...

Using kcachegrind (N.Nethercote and J.Weidendorfer) and valgrind
(J. Seward).

1

B8]20.88 3 570 337 _Ifind_hid
PR m—T—— AR S S

And Locating...

No obvious culprits in the instructions...

5] 462 intj=ind[k];

i1 462 double g = entlk];

f double p=pricef;

3

AE__ 1387 val=e-p;

]

1F__] 9254 if fval == hest_val_1) continue;

And Locating...

But considering cache effects!

—=SENTCAN | | - Intj=indkl, oo
= NPNN | | - double e=entlk],
' double p=price[]];

}

IF_J16.62 val=e-p;

]

Auction’s Inner Loop

Index

Entry .

value = entry - price
save largest...

Auction’s Inner Loop

Same accesses as sparse matrix-vector multiplication!

Index

Entry .

y += a(i,j) * x(j)

Performance Through Blocking?

3 x 3 Register Blocking Example

50t .

i 1
0 10 20 30 40 50
688 true non-zeros

(Images swiped from Berkeley's BeBOP group.)

Performance Through Blocking?

3x 3 Register Blocking Example

25

30

35

40

45

50 . . el .]
0 10 20 30 40 50
688 true non-zeros

(Images swiped from Berkeley's BeBOP group.)

Performance Through Blocking?

3x 3 Register Blocking Example

25

30

35

40

45

50

‘ \ : 3
0 10 20 30 40 50
(688 true non-zeros) + (383 explicit zeros) = 1071 nz

More entries, but 1.5x performance on Pentium 3!
(Images swiped from Berkeley's BeBOP group.)

Blocking Speeds Some Matches

Finite element matrix from Vavasis (in UF collection):

2 x
nz = 1683902

col block size

Blocking Speeds Some Matches

Speed-up for blocking av41092

1 2 3 4 5
row block size

col block size

Blocking Speeds Some Matches

Fill from blocking av41092

row block size

Observations

A blocked graph data structure may provide additional
performance if:

» you iterate over whole rows,
» the graph / matrix has runs of columns, and
» you're willing to use an automated tuning system.

Maximizing the runs: linear arrangement. Hard, but there may be
cheap heuristics. Only worth-while if you're performing many
iterations. (For mat-vec, often > 50 computations of Ax.)

