### Parallel Combinatorial Computing and Sparse Matrices

#### E. Jason Riedy James Demmel

Computer Science Division EECS Department University of California, Berkeley

SIAM Conference on Computational Science and Engineering, 2005

### Outline

Fundamental question: What performance metrics are right?

Background

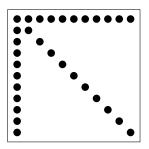
Algorithms Sparse Transpose Weighted Bipartite Matching

Setting Performance Goals

**Ordering Ideas** 

・ロト・日本・日本・日本・日本・日本

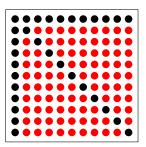
## App: Sparse LU Factorization



#### Characteristics:

- Large quantities of numerical work.
- Eats memory and flops.
- Benefits from parallel work.
- And needs combinatorial support.

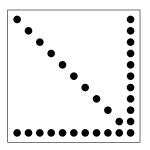
## App: Sparse LU Factorization



#### Characteristics:

- Large quantities of numerical work.
- Eats memory and flops.
- Benefits from parallel work.
- And needs combinatorial support.

# App: Sparse LU Factorization



#### Combinatorial support:

- Fill-reducing orderings, pivot avoidance, data structures.
- Numerical work is distributed.
- Supporting algorithms need to be distributed.
- Memory may be cheap (\$100 GB), moving data is costly.

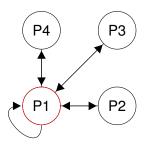
### Sparse Transpose

#### Data structure manipulation

- Dense transpose moves numbers, sparse moves numbers and re-indexes them.
- Sequentially space-efficient "algorithms" exist, but disagree with most processors.
  - Chains of data-dependent loads
  - Unpredictable memory patterns

If the data is already distributed, an unoptimized parallel transpose is better than an optimized sequential one!

(日) (日) (日) (日) (日) (日) (日)

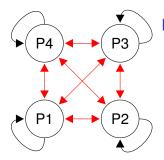


#### Many, many options:

- Send to root, transpose, distribute.
- Transpose, send pieces to destinations.
- ▶ Transpose, then rotate data.
- Replicate the matrix, transpose everywhere.

Communicates most of matrix twice. Node stores whole matrix.

Note: We should compare with this implementation, not purely sequential.



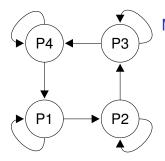
#### Many, many options:

- Send to root, transpose, distribute.
- Transpose, send pieces to destinations.

◆□▶ ◆□▶ ▲□▶ ▲□▶ ▲□ ◆ ○○

- ► Transpose, then rotate data.
- Replicate the matrix, transpose everywhere.

All-to-all communication. Some parallel work.



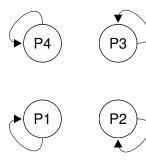
#### Many, many options:

- Send to root, transpose, distribute.
- Transpose, send pieces to destinations.

◆□▶ ◆□▶ ▲□▶ ▲□▶ ▲□ ◆ ○○

- Transpose, then rotate data.
- Replicate the matrix, transpose everywhere.

Serial communication, but may hide latencies.



### Many, many options:

- Send to root, transpose, distribute.
- Transpose, send pieces to destinations.

(日) (字) (日) (日) (日)

- ► Transpose, then rotate data.
- Replicate the matrix, transpose everywhere.

Useful in some circumstances.

What Data Is Interesting?



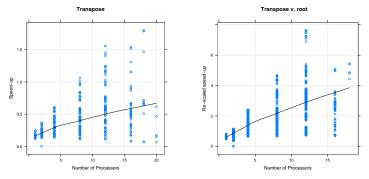


## What Data Is Interesting?

- Time (to solution)
- How much data is communicated.
- Overhead and latency.
- Quantity of data resident on a processor.

(日) (日) (日) (日) (日) (日) (日)

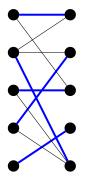
# Parallel Transpose Performance



- All-to-all is slower than pure sequential code, but distributed.
- Actual speed-up when the data is already distributed.
- Hard to keep constant size / node when performance varies by problem.

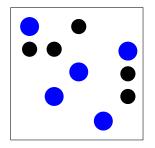
Data from CITRIS cluster, Itanium2s with Myrinet.

# Weighted Bipartite Matching



- Not moving data around but finding where it should go.
- Find the "best" edges in a bipartite graph.
- Corresponds to picking the "best" diagonal.
- Used for static pivoting in factorization.
- Also in travelling salesman problems, etc.

# Weighted Bipartite Matching



- Not moving data around but finding where it should go.
- Find the "best" edges in a bipartite graph.
- Corresponds to picking the "best" diagonal.
- Used for static pivoting in factorization.
- Also in travelling salesman problems, etc.

# Algorithms

#### Depth-first search

- Reliable performance, code available (MC64)
- Requires A and A<sup>T</sup>.
- Difficult to compute on distributed data.

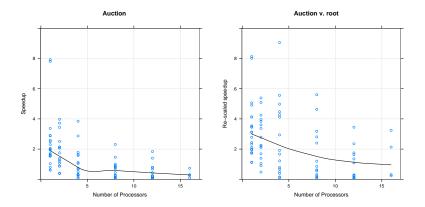
#### Interior point

- Performance varies wildly; many tuning parameters.
- ► Full generality: Solve larger sparse system.
- Auction algorithms replace solve with iterative bidding.

(日) (日) (日) (日) (日) (日) (日)

Easy to distribute.

# Parallel Auction Performance



Compare with running an auction on the root, a parallel auction achieves slight speed-up.

### Proposed Performance Goals

When is a distributed combinatorial algorithm (or code) successful?

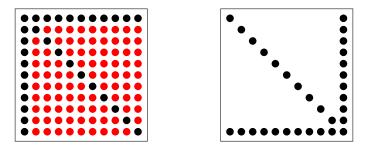
- Does not redistribute the data excessively.
- Keeps the data distributed.
- No process sees more than the whole.
- Performance is competitive with the on-root option.

Pure speed-up is a great goal, but not always reasonable.

(日) (日) (日) (日) (日) (日) (日)

### **Distributed Matrix Ordering**

Finding a permutation of columns and rows to reduce fill.



NP-hard to solve, difficult to approximate.

▲□▶▲□▶▲□▶▲□▶ □ のQで

# Sequential Orderings

#### Bottom-up

- Pick columns (and possibly rows) in sequence.
- Heuristic choices:
  - Minimum degree, deficiency, approximations

(日) (日) (日) (日) (日) (日) (日)

Maintain symbolic factorization

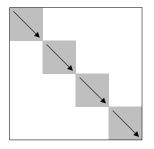
#### Top-down

- Separate the matrix into multiple sections.
  - Graph partitioning:  $A + A^T$ ,  $A^T \cdot A$ , A
- Needs vertex separators: Difficult.

#### Top-down Hybrid

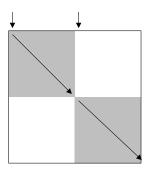
Dissect until small, then order.

### Parallel Bottom-up Hybrid Order



- 1. Separate the graph into chunks.
  - Needs an edge separator,
  - and knowledge of the pivot.
- 2. Order each chunk separately.
  - Forms local partial orders.
- 3. Merge the orders.
  - What needs communicated?

# Merging Partial Orders



#### Respecting partial orders

- Local, symbolic factorization done once.
- Only need to communicate quotient graph.
  - Quotient graph: Implicit edges for Schur complements.

◆□▶ ◆□▶ ▲□▶ ▲□▶ ▲□ ◆ ○ ◆ ○ ◆

 No node will communicate more than the whole matrix.

## Preliminary Quality Results

#### Merging heuristic

- Pairwise merge.
- Pick the head pivot with least worst-case fill (Markowitz cost).

Small (tiny) matrices: performance not reliable.

|                                                              | Matrix   | Method          | NNZ increase  |
|--------------------------------------------------------------|----------|-----------------|---------------|
| -                                                            | west2021 | AMD $(A + A^T)$ | 1.51×         |
|                                                              |          | merging         | 1.68×         |
|                                                              | orani678 | AMD             | <b>2.37</b> × |
|                                                              |          | merging         | 6.11×         |
| Increasing the numerical work drastically spends any savings |          |                 |               |
| from computing a distributed order. Need better heuristics?  |          |                 |               |

### Summary

- Meeting classical expectations of scaling is difficult.
  - Relatively small amounts of computation for much communication.
  - Problem-dependent performance makes equi-size scaling hard.

But consolidation costs when data is already distributed.

In a supporting role, don't sweat the speed-up. Keep the problem distributed.

#### **Open topics**

Any new ideas for parallel ordering?