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Outline

Fundamental question: What performance metrics are right?

Background

Algorithms
Sparse Transpose
Weighted Bipartite Matching

Setting Performance Goals

Ordering Ideas



App: Sparse LU Factorization

Characteristics:
I Large quantities of numerical work.
I Eats memory and flops.
I Benefits from parallel work.
I And needs combinatorial support.
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App: Sparse LU Factorization

Combinatorial support:

I Fill-reducing orderings, pivot
avoidance, data structures.

I Numerical work is distributed.
I Supporting algorithms need to be

distributed.
I Memory may be cheap ($100 GB),

moving data is costly.



Sparse Transpose

Data structure manipulation

I Dense transpose moves numbers, sparse moves numbers
and re-indexes them.

I Sequentially space-efficient “algorithms” exist, but disagree
with most processors.

I Chains of data-dependent loads
I Unpredictable memory patterns

If the data is already distributed, an unoptimized parallel
transpose is better than an optimized sequential one!



Parallel Sparse Transpose

P1 P2

P3P4
Many, many options:

I Send to root, transpose, distribute.
I Transpose, send pieces to destinations.
I Transpose, then rotate data.
I Replicate the matrix, transpose

everywhere.

Communicates most of matrix twice. Node stores whole matrix.

Note: We should compare with this implementation, not purely
sequential.
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Parallel Sparse Transpose

P1 P2

P3P4
Many, many options:

I Send to root, transpose, distribute.
I Transpose, send pieces to destinations.
I Transpose, then rotate data.
I Replicate the matrix, transpose

everywhere.

Useful in some circumstances.



What Data Is Interesting?

I Time

I How much data is communicated.
I Overhead and latency.
I Quantity of data resident on a processor.
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Parallel Transpose Performance
Transpose
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I All-to-all is slower than pure sequential code, but
distributed.

I Actual speed-up when the data is already distributed.
I Hard to keep constant size / node when performance

varies by problem.

Data from CITRIS cluster, Itanium2s with Myrinet.



Weighted Bipartite Matching

I Not moving data around but finding
where it should go.

I Find the “best” edges in a bipartite
graph.

I Corresponds to picking the “best”
diagonal.

I Used for static pivoting in factorization.
I Also in travelling salesman problems,

etc.
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Algorithms

Depth-first search

I Reliable performance, code available (MC64)
I Requires A and AT .
I Difficult to compute on distributed data.

Interior point

I Performance varies wildly; many tuning parameters.
I Full generality: Solve larger sparse system.
I Auction algorithms replace solve with iterative bidding.
I Easy to distribute.



Parallel Auction Performance

Auction
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Compare with running an auction on the root, a parallel auction
achieves slight speed-up.



Proposed Performance Goals

When is a distributed combinatorial algorithm (or code)
successful?

I Does not redistribute the data excessively.
I Keeps the data distributed.
I No process sees more than the whole.
I Performance is competitive with the on-root option.

Pure speed-up is a great goal, but not always reasonable.



Distributed Matrix Ordering

Finding a permutation of columns and rows to reduce fill.

NP-hard to solve, difficult to approximate.



Sequential Orderings

Bottom-up

I Pick columns (and possibly rows) in sequence.
I Heuristic choices:

I Minimum degree, deficiency, approximations
I Maintain symbolic factorization

Top-down

I Separate the matrix into multiple sections.
I Graph partitioning: A + AT , AT · A, A

I Needs vertex separators: Difficult.

Top-down Hybrid

I Dissect until small, then order.



Parallel Bottom-up Hybrid Order

1. Separate the graph into chunks.
I Needs an edge separator,
I and knowledge of the pivot.

2. Order each chunk separately.
I Forms local partial orders.

3. Merge the orders.
I What needs communicated?



Merging Partial Orders

Respecting partial orders

I Local, symbolic factorization done
once.

I Only need to communicate quotient
graph.

I Quotient graph: Implicit edges for
Schur complements.

I No node will communicate more than
the whole matrix.



Preliminary Quality Results

Merging heuristic

I Pairwise merge.
I Pick the head pivot with least worst-case fill (Markowitz

cost).

Small (tiny) matrices: performance not reliable.

Matrix Method NNZ increase
west2021 AMD (A + AT ) 1.51×

merging 1.68×
orani678 AMD 2.37×

merging 6.11×
Increasing the numerical work drastically spends any savings
from computing a distributed order. Need better heuristics?



Summary

I Meeting classical expectations of scaling is difficult.
I Relatively small amounts of computation for much

communication.
I Problem-dependent performance makes equi-size scaling

hard.
I But consolidation costs when data is already distributed.

In a supporting role, don’t sweat the speed-up.
Keep the problem distributed.

Open topics

I Any new ideas for parallel ordering?
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