
Parallel Combinatorial Computing and Sparse
Matrices

E. Jason Riedy James Demmel

Computer Science Division
EECS Department

University of California, Berkeley

SIAM Conference on Computational Science and
Engineering, 2005

Outline

Fundamental question: What performance metrics are right?

Background

Algorithms
Sparse Transpose
Weighted Bipartite Matching

Setting Performance Goals

Ordering Ideas

App: Sparse LU Factorization

Characteristics:
I Large quantities of numerical work.
I Eats memory and flops.
I Benefits from parallel work.
I And needs combinatorial support.

App: Sparse LU Factorization

Characteristics:
I Large quantities of numerical work.
I Eats memory and flops.
I Benefits from parallel work.
I And needs combinatorial support.

App: Sparse LU Factorization

Combinatorial support:

I Fill-reducing orderings, pivot
avoidance, data structures.

I Numerical work is distributed.
I Supporting algorithms need to be

distributed.
I Memory may be cheap ($100 GB),

moving data is costly.

Sparse Transpose

Data structure manipulation

I Dense transpose moves numbers, sparse moves numbers
and re-indexes them.

I Sequentially space-efficient “algorithms” exist, but disagree
with most processors.

I Chains of data-dependent loads
I Unpredictable memory patterns

If the data is already distributed, an unoptimized parallel
transpose is better than an optimized sequential one!

Parallel Sparse Transpose

P1 P2

P3P4
Many, many options:

I Send to root, transpose, distribute.
I Transpose, send pieces to destinations.
I Transpose, then rotate data.
I Replicate the matrix, transpose

everywhere.

Communicates most of matrix twice. Node stores whole matrix.

Note: We should compare with this implementation, not purely
sequential.

Parallel Sparse Transpose

P1 P2

P3P4
Many, many options:

I Send to root, transpose, distribute.
I Transpose, send pieces to destinations.
I Transpose, then rotate data.
I Replicate the matrix, transpose

everywhere.

All-to-all communication. Some parallel work.

Parallel Sparse Transpose

P1 P2

P3P4
Many, many options:

I Send to root, transpose, distribute.
I Transpose, send pieces to destinations.
I Transpose, then rotate data.
I Replicate the matrix, transpose

everywhere.

Serial communication, but may hide latencies.

Parallel Sparse Transpose

P1 P2

P3P4
Many, many options:

I Send to root, transpose, distribute.
I Transpose, send pieces to destinations.
I Transpose, then rotate data.
I Replicate the matrix, transpose

everywhere.

Useful in some circumstances.

What Data Is Interesting?

I Time

I How much data is communicated.
I Overhead and latency.
I Quantity of data resident on a processor.

What Data Is Interesting?

I Time (to solution)
I How much data is communicated.
I Overhead and latency.
I Quantity of data resident on a processor.

Parallel Transpose Performance
Transpose

Number of Processors

S
pe

ed
−

up

5 10 15 20

0.0

0.5

1.0

1.5

●●●●●

●●
●●●

●

●●

●●●●●

●

●

●●●●●

●●●●●

●●●●●

●●●
●● ●●●

●●●●● ●●●●●● ●
●
●●●●●●●●

●●●●
● ●●●

●●●●●

●●●●●●
●
●
●●●

●●●●●

●

●

●
●
●

●
●

●
●
●●●

●●
●
●
●

●
●●
●●

●●●●●

●●
●
●
●

●●

●●●●●

●●●●●

●●
●
●●

●●●●●

●●
●●● ●

●

●●●●●

●●●●●

●●●●●

●●●●●

●●
●

●

●

●●

●●●●●

●●●
●●

●

●

●●●

●●●●●

●●●●●

●●●

●●●●●

●●●●●
●●●●●

●●●●●

●
●

●
●●

●

●

●●●●●

●●
●

●

●

●●●
●●

●●●●●

●●●●●
●

●●●●
●

●●●●●

●●●●●

●●●●●

●●●●●

●●

●●●●●

●●●●●

●●●●●

●●●●●

●●●●
●

●

●

●●●
●●

●●●●●

●●
●
●●

●●●●●

●●

●

●

●
●
●

●●●●●

●●

●

●●

●●
●●
●

●●●●●

●
●
●

●●

●

●
●●
●●

●●●●●

●●
●
●●

●●●●●

●●●●
●

●

●●●●●

●●●●●

●●●●●

●●●●●

●●●
●●

●●

●●●●●

●●●●●

●●●●●

●●●●●

●
●
●●
●

●●
●●●●●

●
●●●● ●●●●●

●●●●●

●
●
●●●

●●
●

●●

●●●●●

●●●●●

●●
●●●

●●●●●

●●

●
●
●

●
●

●

●●

●●
●
●●

●●●●●

●
●

●●
●

●●●●●

●●●●●

●

●
●

●●●

●●●●●

●●●●●

●
●
●●●

●●●●●

●●●●●

●

●●

●

●

●

●●●●●

●●●●●

●●●●●

●●●●● ●●
●●●

●●● ●●●

●

●●●●

●

●●●●● ●●●●●

Transpose v. root

Number of Processors

R
e−

sc
al

ed
 s

pe
ed

−
up

5 10 15

0

2

4

6

●●●●●●●●●●●●●●●

●
●
●
●●●●
●
●●
●
●
●
●●

●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●

●
●
●●●●
●
●●●●
●
●●●

●●●●●●●●●●●●●●●

●●●
●●

●●●
●●
●●●
●●

●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●● ●
●
●●●●
●
●●●●
●
●●●

●●●●●●●●●●●●●●●

●●●●
●
●●●●
●
●●●●
●

●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●
●
●
●●●●
●
●●●●
●
●●●

●●●●●●●●●●●●●●●

●

●

●
●
●●

●

●
●
●
●

●

●
●
●

●●●●●●●●●
●●●●●●

●●
●
●
●
●●
●
●
●
●●
●
●
●

●
●●
●●●
●●
●●●
●●
●●

●●●●●●●●●●●●●●●

●
●
●
●
●

●●
●
●
●

●
●
●
●
●

●●●●●●●●●●●●●●●

●●●●●●●●●●

●●●●●

●●
●
●●●●
●
●●●●
●
●●

●●●●●●●●●●●●●●●

●●
●●●●●
●●●
●●
●●●

●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●

●●
●

●

●
●●
●

●

●●●
●

●

●

●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●

●
●
●●●●
●
●●●●
●
●●●

●●●●●●●●●●●●●●●

●●●●●●●●●●
●●●●●

●●●

●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●● ●●●●●

●●●●●
●●●●●

●●●●●●●●●●●●●●●

●
●

●

●
●

●
●

●

●
●

●
●

●

●
●

●●●●●●●●●●●●●●●

●●
●

●

●●●
●

●

●
●●
●

●

●

●●●

●
●

●●●

●
●●●
●

●
●

●●●●●●●●●●●●●●●

●
●
●●●
●●●●●
●
●
●●●

●●

●●●●
●
●●●●
●
●●●●
●

●●●●●●●●●●
●●●●●

●●
●
●●
●●
●
●●
●●
●
●●

●●●●●●●●●●●●●●●

●●●●●●
●●●●

●●●●●

●●●●

●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●

●●●●●●●●●●●
●●●●

●●●●●●●●●●●●●●●

●●●
●●●●●
●●●●●
●●

●

●

●

●

●●●
●●●●●
●●●●●
●●

●●●●●●●●●●●●●●●

●●
●

●●
●●
●

●●
●●
●

●●

●●●●●●●●●●●●●●●

●●

●

●

●

●●

●

●

●

●●

●

●

●
●

●

●

●

●●●●●●●●●●●●●●●

●●

●

●●●●

●

●●●●

●

●●

●●
●
●●

●●

●
●●

●●
●
●●

●●●●●●●●●●●●●●●

●
●
●

●
●

●
●
●

●
●

●
●
●

●
●

●●

●
●
●●●●
●
●●●●
●
●●●

●●●●●●●●●●
●●●●●

●●
●
●●

●●
●
●●

●●
●
●●

●●●●●●●●●●●●●●●

●●●●
●
●●●●
●
●●●●
●

●

●●●●●●●●●●●●●●●

●●●●●
●●●●●
●●●●●

●●●●●

●●●●●

●●●●●

●●●●●●●●●●●●●●●

●●●
●●
●●●
●●
●●●
●●

●
●

●●

●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●

●●●●●
●●●●●

●●●●●

●●●●●●●●●●●●●●●

●
●
●
●
●

●
●
●
●
●

●
●
●
●
●

●●

●●●●●●
●●●●●●●●●

●
●●●●●
●●●●●
●
●●●

●●●
●
●●●●
●
●
●●●
●
●

●●●●●●●●●●●●●●●

●
●

●●●
●
●

●●●

●
●

●●●

●●
●
●●
●

●●

●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●

●
●
●●●
●
●
●●●

●
●
●●●

●●●●●●●●●●●●●●●

●●

●●
●

●●

●
●
●

●●

●●
●

●●●●

●

●●

●●●
●●●●●
●●●●●
●●

●●●●●●●
●●●●●●●●

●
●

●●
●

●
●

●●
●
●
●

●●
●

●●●●●●●●●●●●●●●

●●●●●

●●●●●●●●●●

●

●
●

●

●
●

●

●
●

●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●

●
●
●●●

●
●
●●●
●
●
●●●

●●●●●●●●●●●●●●●

●●●●●

●●●
●
●

●●●●●
●

●●

●

●●●

●●

●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●

●●●●●

●●●●●

●●●●●

●●●●●●●●●●●●●●●

●●

●●●

●●

●●●

●●

●●●
●●●●●●

●

●●●●

●

●●●●

●

●●●●

●●●●●●●●●●●●●●●
●
●
●●●
●
●
●●●●
●
●●●

I All-to-all is slower than pure sequential code, but
distributed.

I Actual speed-up when the data is already distributed.
I Hard to keep constant size / node when performance

varies by problem.

Data from CITRIS cluster, Itanium2s with Myrinet.

Weighted Bipartite Matching

I Not moving data around but finding
where it should go.

I Find the “best” edges in a bipartite
graph.

I Corresponds to picking the “best”
diagonal.

I Used for static pivoting in factorization.
I Also in travelling salesman problems,

etc.

Weighted Bipartite Matching

I Not moving data around but finding
where it should go.

I Find the “best” edges in a bipartite
graph.

I Corresponds to picking the “best”
diagonal.

I Used for static pivoting in factorization.
I Also in travelling salesman problems,

etc.

Algorithms

Depth-first search

I Reliable performance, code available (MC64)
I Requires A and AT .
I Difficult to compute on distributed data.

Interior point

I Performance varies wildly; many tuning parameters.
I Full generality: Solve larger sparse system.
I Auction algorithms replace solve with iterative bidding.
I Easy to distribute.

Parallel Auction Performance

Auction

Number of Processors

S
pe

ed
up

5 10 15

2

4

6

8

●●

●

●

●
●

●
●

●

●

● ●

●●

●
● ● ●

●●

●

●
●

●

●●

●

●

● ●

●●

● ●

●

●

●

●

● ●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

● ●
●

● ●

●

●

●

●

●● ●

● ● ●

●
●

●
●

●

●

●

●

●
●

Auction v. root

Number of Processors

R
e−

sc
al

ed
 s

pe
ed

up

5 10 15

2

4

6

8

●●

●

●

●

●
●

●

●

● ●

●● ●●

●

●

●●

●

●
●

●

●●

●

●

● ●

●●

●

●

●

●

●

●

● ●

●
●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

Compare with running an auction on the root, a parallel auction
achieves slight speed-up.

Proposed Performance Goals

When is a distributed combinatorial algorithm (or code)
successful?

I Does not redistribute the data excessively.
I Keeps the data distributed.
I No process sees more than the whole.
I Performance is competitive with the on-root option.

Pure speed-up is a great goal, but not always reasonable.

Distributed Matrix Ordering

Finding a permutation of columns and rows to reduce fill.

NP-hard to solve, difficult to approximate.

Sequential Orderings

Bottom-up

I Pick columns (and possibly rows) in sequence.
I Heuristic choices:

I Minimum degree, deficiency, approximations
I Maintain symbolic factorization

Top-down

I Separate the matrix into multiple sections.
I Graph partitioning: A + AT , AT · A, A

I Needs vertex separators: Difficult.

Top-down Hybrid

I Dissect until small, then order.

Parallel Bottom-up Hybrid Order

1. Separate the graph into chunks.
I Needs an edge separator,
I and knowledge of the pivot.

2. Order each chunk separately.
I Forms local partial orders.

3. Merge the orders.
I What needs communicated?

Merging Partial Orders

Respecting partial orders

I Local, symbolic factorization done
once.

I Only need to communicate quotient
graph.

I Quotient graph: Implicit edges for
Schur complements.

I No node will communicate more than
the whole matrix.

Preliminary Quality Results

Merging heuristic

I Pairwise merge.
I Pick the head pivot with least worst-case fill (Markowitz

cost).

Small (tiny) matrices: performance not reliable.

Matrix Method NNZ increase
west2021 AMD (A + AT) 1.51×

merging 1.68×
orani678 AMD 2.37×

merging 6.11×
Increasing the numerical work drastically spends any savings
from computing a distributed order. Need better heuristics?

Summary

I Meeting classical expectations of scaling is difficult.
I Relatively small amounts of computation for much

communication.
I Problem-dependent performance makes equi-size scaling

hard.
I But consolidation costs when data is already distributed.

In a supporting role, don’t sweat the speed-up.
Keep the problem distributed.

Open topics

I Any new ideas for parallel ordering?

	Background
	Algorithms
	Sparse Transpose
	Weighted Bipartite Matching

	Setting Performance Goals
	Ordering Ideas
	Summary

