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Outline

Motivation

STING for streaming, graph-structured data on Intel-based
platforms

World-leading community detection

Community-building interactions

Plans and direction

Note: Without hard limits, academics will use at least all the time...
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(Prefix)scale Data Analysis

Health care Finding outbreaks, population epidemiology
Social networks Advertising, searching, grouping

Intelligence Decisions at scale, regulating algorithms
Systems biology Understanding interactions, drug design

Power grid Disruptions, conservation
Simulation Discrete events, cracking meshes
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Graphs are pervasive

Graphs: things and relationships
• Different kinds of things, different kinds of relationships, but

graphs provide a framework for analyzing the relationships.
• New challenges for analysis: data sizes, heterogeneity,

uncertainty, data quality.

Astrophysics
Problem Outlier detection
Challenges Massive data
sets, temporal variation
Graph problems Matching,
clustering

Bioinformatics
Problem Identifying target
proteins
Challenges Data
heterogeneity, quality
Graph problems Centrality,
clustering

Social Informatics
Problem Emergent behavior,
information spread
Challenges New analysis,
data uncertainty
Graph problems Clustering,
flows, shortest paths
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No shortage of data...

Existing (some out-of-date) data volumes
NYSE 1.5 TB generated daily, maintain a 8 PB archive

Google “Several dozen” 1PB data sets (CACM, Jan 2010)
Wal-Mart 536 TB, 1B entries daily (2006)

EBay 2 PB, traditional DB, and 6.5PB streaming, 17
trillion records, 1.5B records/day, each web click is
50-150 details.
http://www.dbms2.com/2009/04/30/
ebays-two-enormous-data-warehouses/

Facebook 845 M users... and growing(?)

• All data is rich and semantic (graphs!) and changing.
• Base data rates include items and not relationships.
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General approaches

• High-performance static graph analysis
• Develop techniques that apply to unchanging massive

graphs.
• Provides useful after-the-fact information, starting points.
• Serves many existing applications well: market research,

much bioinformatics, ...
• High-performance streaming graph analysis

• Focus on the dynamic changes within massive graphs.
• Find trends or new information as they appear.
• Serves upcoming applications: fault or threat detection,

trend analysis, ...

Both very important to different areas.
GT’s primary focus is on streaming.

Note: Not CS theory streaming, but analysis of streaming data.
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Why analyze data streams?

Data volumes
NYSE 1.5TB daily

LHC 41TB daily
Facebook, etc. Who

knows?

Data transfer
• 1 Gb Ethernet: 8.7TB daily at

100%, 5-6TB daily realistic
• Multi-TB storage on 10GE: 300TB

daily read, 90TB daily write
• CPU↔ Memory: QPI,HT:

2PB/day@100%

Data growth
• Facebook: > 2×/yr
• Twitter: > 10×/yr
• Growing sources:

Bioinformatics,
µsensors, security

Speed growth
• Ethernet/IB/etc.: 4× in next 2

years. Maybe.
• Flash storage, direct: 10× write,

4× read. Relatively huge cost.
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Intel’s non-numeric computing
program (our perspective)

Supporting analysis of massive graph under rapid change
across the spectrum of Intel-based platforms.

STING on Intel-based platforms
• Maintain a graph and metrics under large data changes

• Performance, documentation, distribution
• Greatly improved ingestion rate, improved example metrics
• Available at http://www.cc.gatech.edu/stinger/.

• Algorithm development
• World-leading community detection (clustering) performance

on Intel-based platforms
• Good for focused or multi-level analysis, visualization, ...

• Developments on community monitoring in dynamic graphs
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On to STING...

Motivation

STING for streaming, graph-structured data on Intel-based
platforms

Assumptions about the data
High-level architecture
Algorithms and performance

World-leading community detection

Community-building interactions

Plans and direction
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Overall streaming approach

Yifan Hu’s (AT&T) visualization of the
Livejournal data set Jason’s network via LinkedIn Labs

Assumptions
• A graph represents some real-world phenomenon.

• But not necessarily exactly!
• Noise comes from lost updates, partial information, ...

10 / 57

http://www2.research.att.com/~yifanhu/GALLERY/GRAPHS/GIF_SMALL/SNAP@soc-LiveJournal1.html
http://www2.research.att.com/~yifanhu/GALLERY/GRAPHS/GIF_SMALL/SNAP@soc-LiveJournal1.html
http://inmaps.linkedinlabs.com/share/Jason_Riedy/135243263311536682812471775171414573322


Overall streaming approach

Yifan Hu’s (AT&T) visualization of the
Livejournal data set Jason’s network via LinkedIn Labs

Assumptions
• We target massive, “social network” graphs.

• Small diameter, power-law degrees
• Small changes in massive graphs often are unrelated.
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Overall streaming approach

Yifan Hu’s (AT&T) visualization of the
Livejournal data set Jason’s network via LinkedIn Labs

Assumptions
• The graph changes but we don’t need a continuous view.

• We can accumulate changes into batches...
• But not so many that it impedes responsiveness.
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STING’s focus

Source data

predictionaction

summary

Control

VizSimulation / query

• STING manages queries against changing graph data.
• Visualization and control often are application specific.

• Ideal: Maintain many persistent graph analysis kernels.
• One current snapshot of the graph, kernels keep smaller

histories.
• Also (a harder goal), coordinate the kernels’ cooperation.

• STING components:
• Framework for batching input changes.
• Lockless data structure, STINGER, accumulating a typed

graph with timestamps.
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STINGER

STING Extensible Representation:

• Rule #1: No explicit locking.
• Rely on atomic operations.

• Massive graph: Scattered updates, scattered reads rarely
conflict.

• Use time stamps for some view of time.
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STING’s year

Over the past year
• Improved performance on Intel-based platforms by

14×[HPEC12]
• Evaluated multiple dynamic kernels across

platforms[MTAAP12, ICASSP2012]
• Documentation and tutorials
• Assist projects with STING adoption on Intel-based

platforms

13 / 57



STING in use

Where is it?
http://www.cc.gatech.edu/stinger/

Code, development, documentation, presentations...

Who is using it?
• Center for Adaptive Supercomputing Software –

Multithreaded Architectures (CASS-MT) directed by PNNL
• PRODIGAL team for DARPA ADAMS (Anomaly Detection at

Multiple Scales) including GTRI, SAIC, Oregon State U., U.
Mass., and CMU

• DARPA SMISC (Social Media in Strategic Communication)
including GTRI

• Well-attended tutorials given at PPoPP, in MD, and locally.
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Experimental setup

Unless otherwise noted
Line Model Speed (GHz) Sockets Cores

Nehalem X5570 2.93 2 4
Westmere X5650 2.66 2 6
Westmere E7-8870 2.40 4 10

• Large Westmere, mirasol, loaned by Intel (thank you!)
• All memory: 1067MHz DDR3, installed appropriately
• Implementations: OpenMP, gcc 4.6.1, Linux ≈ 3.2 kernel
• Artificial graph and edge stream generated by R-MAT

[Chakrabarti, Zhan, & Faloutsos].
• Scale x , edge factor f ⇒ 2x vertices, ≈ f · 2x edges.
• Edge actions: 7/8th insertions, 1/8th deletions
• Results over five batches of edge actions.

• Caveat: No vector instructions, low-level optimizations yet.
• Portable: OpenMP, Cray XMT family
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STINGER insertion / removal rates

Edges per second
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STINGER insertion / removal rates

Seconds per batch, “latency”

Number of threads
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Clustering coefficients

• Used to measure “small-world-ness”
[Watts & Strogatz] and potential
community structure

• Larger clustering coefficient⇒ more
inter-connected

• Roughly the ratio of the number of actual
to potential triangles

v

i

j

m

n

• Defined in terms of triplets.
• i – v – j is a closed triplet (triangle).
• m – v – n is an open triplet.
• Clustering coefficient:

# of closed triplets / total # of triplets
• Locally around v or globally for entire graph.
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STINGER clustering coefficient rates
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STINGER clustering coefficient rates

Speed-up over static recalculation
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Connected components

• Maintain a mapping from vertex to
component.

• Global property, unlike triangle
counts

• In “scale free” social networks:
• Often one big component, and
• many tiny ones.

• Edge changes often sit within
components.

• Remaining insertions merge
components.

• Deletions are more difficult...

19 / 57



Connected components: Deleted
edges

The difficult case
• Very few deletions matter.
• Maintain a spanning tree, &

ignore deletion if
1 not in spanning tree,
2 endpoints share a

common neighbor∗,
3 loose endpoint reaches

root∗.

• In the last two (∗), also fix
the spanning tree.

• Rules out 99.7% of
deletions.

• (Long history, see related
work in [MTAAP11].)
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STINGER component monitoring
rates
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STINGER component monitoring
rates

Seconds per batch, “latency”

Number of threads

S
ec

on
ds

 p
er

 b
at

ch
 p

ro
ce

ss
ed

10−1.5

10−1

10−0.5

100

100.5

101

E7−8870

●
●●

●●●

●
●
●

●●●
●●
● ●

●●
●
●
●

●●●

●●
●

●●
● ●●● ●●●

●●●

●
●●

●●●

●●● ●
●
●●●

● ●
●●

●
●● ●

●●
●●● ●

●
●

●●● ●●●
●●●

●●●
●
●
●

●

●

●

●●●

●

●●

●●●
●
●●

●

●

● ●●●

●

●

●

●●● ●●

● ●
●
● ●●

●
●●

●

●●

●●●●

●

●

●
●
●

●

●●●

●
●
●

●
●

●
●●●

●
●● ●●●

●●
●

●●● ●●● ●●
●

●
●●

●●●

●●●

●●

●

●●●

●

●
● ●●

● ●●●
●●●

●●●
●
●● ●

●
●

●●
● ●

●

●

●●●

●●●

●
●● ●

●
●

●●●

●●

● ●
●
● ●

●●

●●●

●
●
● ●

●● ●●
●

●●
● ●●●

●●●

●●●

●●●

●●●

●●●

●
●
●

●●●

●
●●

●●●

●
●
● ●●

●
●●●

●
●●

●
●

●

●●●

●●●

●
●● ●●

●

●●●

●

●
● ●

●● ●●●

●●●

●●● ●

●
● ●

●
●

●
●
●

●

●

●

●●●

●
●●

●●●

●
●
●

●
●●

●
●● ●

●
●

●●●

●●●

●●● ●
●● ●

●●
●

●

● ●

●

●

●
●
●

●●●

●●
●

●●●

●●●

●●● ●
●●

●●●

●●●

●●●
●
●● ●

●●
●●
●

●
●

●

●●●

20 40 60 80

X5570

●

●●

●

●

●

●●●

●
●

●

●
●●

●●●

●●●

●●

●
●● ●●

●
●

●

● ●●●

●
●

●

●●
●

●

●

●

●●●

●

●●

●

●
●

●●●●●

●
●●

●●●

●

●
●

●

●

●

●●

●

●●●
●
●● ●

●
●

●

●●

●

●

●
●

●

●●
●

●
●●

●●●

●●

●

●

●

●●

●
●

●

●

●●●

●●●

●●●

●●

●

●●●

●●

●

●

●

●●●

●●●

●●●

●
●●

●●

●
●
●

●●●

●●●

●●●

●●●

●
●●

●
●●

●●

●●

●

●●●

●●●

●●●

●●●

●●

●●●

●

●●

●●●

●
●
●

●
●
●

●●●

5 10 15 20

Batch size

● 3000000

● 1000000

● 300000

● 100000

● 30000

● 10000

● 3000

● 1000

● 300

● 100

21 / 57



STINGER component monitoring
rates
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Community detection

Motivation

STING for streaming, graph-structured data on Intel-based
platforms

World-leading community detection
Defining community detection
Our parallel, agglomerative algorithm
Performance

Community-building interactions

Plans and direction
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Community detection

What do we mean?
• Partition a graph’s

vertices into disjoint
communities.

• A community locally
maximizes some metric.

• Modularity,
conductance, ...

• Trying to capture that
vertices are more
similar within one
community than
between communities.

Jason’s network via LinkedIn Labs
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http://inmaps.linkedinlabs.com/share/Jason_Riedy/135243263311536682812471775171414573322


Community detection

Assumptions
• Disjoint partitioning of

vertices.
• There is no one unique

answer.
• Many metrics:

NP-complete to opti-
mize [Brandes, et al.].

• Graph is lossy
representation.

• Want an adaptable
detection method.

• For rest, assume
modularity [Newman].

• Important: Edge local
scoring.

Jason’s network via LinkedIn Labs
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Multi-threaded algorithm design
points

Targeting massive graphs
Multi-threading over shared memory, up to 2 GiB on Intel-based
platforms.

A scalable multi-threaded graph analysis algorithm
• ... avoids global locks and frequent global synchronization.
• ... distributes computation over edges rather than only

vertices.
• ... works with data as local to an edge as possible.
• ... uses compact data structures that agglomerate memory

references.
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Sequential agglomerative method

A

B

C

D
E

FG

• A common method (e.g.
[Clauset, et al.]) agglomerates
vertices into communities.

• Each vertex begins in its own
community.

• An edge is chosen to contract.
• Merging maximally increases

modularity.
• Priority queue.

• Known often to fall into an O(n2)
performance trap with modularity
[Wakita and Tsurumi].
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Parallel agglomerative method

A

B

C

D
E

FG

• We use a matching to avoid the
queue.

• Compute a heavy weight, large
matching.
• Simple greedy algorithm.
• Maximal matching.
• Within factor of 2 in weight.

• Merge all matched communities at
once.

• Maintains some balance.
• Produces different results.
• Agnostic to weighting, matching...

• Can maximize modularity, minimize
conductance.

• Modifying matching permits easy
exploration.
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Implementation: Data structures

Extremely basic for graph G = (V ,E)

• An array of (i , j ;w) weighted edge pairs, each i , j stored
only once and packed, uses 3|E | space

• An array to store self-edges, d(i) = w , |V |
• A temporary floating-point array for scores, |E |
• A additional temporary arrays using 4|V |+ 2|E | to store

degrees, matching choices, offsets...

• Weights count number of agglomerated vertices or edges.
• Scoring methods (modularity, conductance) need only

vertex-local counts.
• Storing an undirected graph in a symmetric manner reduces

memory usage drastically and works with our simple
matcher.
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• An array of (i , j ;w) weighted edge pairs, each i , j stored
only once and packed, uses 3|E | space

• An array to store self-edges, d(i) = w , |V |
• A temporary floating-point array for scores, |E |
• A additional temporary arrays using 4|V |+ 2|E | to store

degrees, matching choices, offsets...

• Original ignored order in edge array, killed OpenMP.
• Roughly bucket edge array by first stored index.

Non-adjacent CSR-like structure [MTAAP12].
• Hash i , j to determine order. Scatter among buckets

[MTAAP12].
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Implementation: Routines

Three primitives: Scoring, matching, contracting
Scoring Trivial.

Matching Repeat until no ready, unmatched vertex:

1 For each unmatched vertex in parallel, find the
best unmatched neighbor in its bucket.

2 Try to point remote match at that edge (lock,
check if best, unlock).

3 If pointing succeeded, try to point self-match at
that edge.

4 If both succeeded, yeah! If not and there was
some eligible neighbor, re-add self to ready,
unmatched list.

(Possibly too simple, but...)
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Implementation: Routines

Contracting
1 Map each i , j to new vertices, re-order by hashing.
2 Accumulate counts for new i ′ bins, prefix-sum for offset.
3 Copy into new bins.

• Only synchronizing in the prefix-sum. That could be
removed if I don’t re-order the i ′, j ′ pair; haven’t timed the
difference.

• Actually, the current code copies twice... On short list for
fixing.

• Binning as opposed to original list-chasing enabled
Intel/OpenMP support with reasonable performance.
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Performance summary

Two moderate-sized graphs, one large
Graph |V | |E | Reference

rmat-24-16 15 580 378 262 482 711 [Chakrabarti, et al.]
[Bader, et al.]

soc-LiveJournal1 4 847 571 68 993 773 [Leskovec]
uk-2007-05 105 896 555 3 301 876 564 [Boldi, et al.]

Peak processing rates in edges/second

Platform rmat-24-16 soc-LiveJournal1 uk-2007-05

X5570 1.83× 106 3.89× 106

X5650 2.54× 106 4.98× 106

E7-8870 5.86× 106 6.90× 106 6.54× 106

XMT 1.20× 106 0.41× 106

XMT2 2.11× 106 1.73× 106 3.11× 106
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Performance: Time to solution
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Performance: Rate (edges/second)
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Performance: Modularity

step

M
od
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ity

0.0
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0.4
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●
●

0 10 20 30

Graph

● coAuthorsCiteseer ● eu−2005 ● uk−2002

Termination metric

● Coverage Max Average

• Timing results: Stop when coverage ≥ 0.5 (communities cover 1/2

edges).

• More work⇒ higher modularity. Choice up to application.
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Performance: Large-scale time
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Performance: Large-scale speedup
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Building a community around
streaming, graph-structured data

Motivation

STING for streaming, graph-structured data on Intel-based
platforms

World-leading community detection

Community-building interactions
External STING users∗
Graph500 (synergistic)
Conferences, DIMACS Challenge, etc.

Plans and direction
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Graph500

Not part of this project, but...
To keep people apprised:
• Adding single-source shortest paths benchmark.
• Re-working the generator to be more scalable, vectorized,

etc.
• Addressing some generator parameter issues. Fewer

duplicate edges.
• Improving shared-memory reference implementation

performance...
• (Possibly adding an OpenCL reference implementation.)

mirasol is very useful for development and reference tuning.
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10th DIMACS Implementation
Challenge

Graph partitioning and clustering
• Georgia Tech assisted in organizing the 10th DIMACS

Implementation Challenge.
• Co-sponsored by Intel.
• Community detection implementation on mirasol won the

Mix Challenge combining speed and multiple clustering
criteria.
• One of only two implementations that tackled uk-2007-05

with 106 million vertices and 3.3 billion edges.
• Other implementation required multiple days across a

cluster.

• Next closest for performance used Intel’s TBB (Fagginger
Auer & Bisseling) or CUDA (small examples).
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Conferences and minisymposiums

• GT hosted the bi-annual SIAM Parallel Processing
conference.
• Included a well-attended minisymposium organized by Riedy

& Meyerhenke on “Parallel Analysis of Massive Social
Networks,” including KDT work from UCSB.

• Submitting a massive graph minisymposium for SIAM CSE
2013 (25 Feb – 1 Mar)... Looking for speakers.

• List of presentations appended to slides, too many to
include.
• 10 conference presentations / invited talks / posters
• 3 tutorials
• 5 accepted (refereed) publications, 1 in submission
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Plans and direction

Motivation

STING for streaming, graph-structured data on Intel-based
platforms

World-leading community detection

Community-building interactions

Plans and direction
Plans
Software
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Plans

• Finish the split into a client/server model, including
subgraph visualization, looking into KDT interface.

• Integrate performance counters, build a performance model
/ monitor.
• Evaluate Intel features for bottlenecks (vectors, better NUMA

allocation, etc.)

• Incorporate community detection, seed set expansion.
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STING on-line resources

Home page http://www.cc.gatech.edu/stinger/

Download .../downloads.php

Reference guide .../doxygen/

General tutorial (URL too long, linked from above)

The current release of STING includes the following static and
dynamic analysis kernel examples:
• multi-platform benchmarks for edge insertion and removal

(dynamic),
• breadth-first search (static),
• clustering and transitivity coefficients (static and dynamic),

and
• connected components (static and dynamic).
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Community detection

Home page http://www.cc.gatech.edu/˜jriedy/
community-detection/

Git source repository http://www.cc.gatech.edu/

˜jriedy/gits/community-el.git

• “Experimental” and subject to extreme change.
• Current version packaged as a separate, easy to use /

import executable.
• Being adapted into STING.
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Presentations and tutorials I

David A. Bader.
Opportunities and challenges in massive data-intensive
computing,.
In 9th International Conference on Parallel Processing and
Applied Mathematics (PPAM11), September 2011.
(invited keynote).

David A. Bader.
Opportunities and challenges in massive data-intensive
computing.
Workshop on Parallel Algorithms and Software for Analysis
of Massive Graphs (ParGraph), December 2011.
(invited keynote).
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Presentations and tutorials II

Jason Riedy, David Ediger, David A. Bader, and Henning
Meyerhenke.
Tracking structure of streaming social networks.
2011 Graph Exploitation Symposium hosted by MIT Lincoln
Labs, August 2011.
(presentation).

David A. Bader.
Fourth Graph500 results.
Graph500 Birds of a Feather, 27th International
Supercomputing Conference (ISC), June 2012.
(presentation).
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Presentations and tutorials III

David A. Bader.
Massive data analytics using heterogeneous computing.
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