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1 Introduction and Motivation

LAPACK and ScaLAPACK are widely used software libraries for numerical lin-
ear algebra. There have been over 68M web hits at www.netlib.org for the asso-
ciated libraries LAPACK, ScaLAPACK, CLAPACK and LAPACK95. LAPACK
and ScaLAPACK are used to solve leading edge science problems and they have
been adopted by many vendors and software providers as the basis for their own
libraries, including AMD, Apple (under Mac OS X), Cray, Fujitsu, HP, IBM,
Intel, NEC, SGI, several Linux distributions (such as Debian), NAG, IMSL, the
MathWorks (producers of MATLAB), Interactive Supercomputing, and PGI.
Future improvements in these libraries will therefore have a large impact on
users.

The ScaLAPACK and LAPACK development is mostly driven by algorithm
research, the result of the user/vendor survey, the demands and opportunities
of new architectures and programming languages, and the enthusiastic partici-
pation of the research community in developing and offering improved versions
of existing Sca/LAPACK codes [51].

Brief outline of the paper: Section 2 discusses challenges in making current
algorithms run efficiently, scalably, and reliably on future architectures. Section 3
discusses two kinds of improved algorithms: faster ones and more accurate ones.
Since it is hard to improve both simultaneously, we choose to include a new faster
algorithm if it is about as accurate as previous algorithms, and we include a new
more accurate algorithm if it is at least about as fast as the previous algorithms.
Section 4 describes new linear algebra functionality that will be included in new
Sca/LAPACK releases. Section 5 describes our proposed software structure for
Sca/LAPACK. Section 6 describes initial performance results.

2 Challenges of Future Architectures

Parallel computing is becoming ubiquitous at all scales of computation. It is
no longer just exemplified by the TOP 500 list of the fastest computers in the
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world. In a few years typical laptops are predicted to have 64 cores per multicore
processor chip, and up to 256 hardware threads per chip. So unless all algorithms
(not just numerical linear algebra!) can exploit this parallelism, they will cease
to speed up, and in fact slow down compared to machine peak.

Furthermore, the gap between processor speed and memory speed continues
to grow exponentially: processor speeds are improving at 59% per year, main
memory bandwidth at only 23%, and main memory latency at a mere 5.5% [39].
This means that an algorithm that is efficient today, because it does enough
floating point operations per memory reference to mask slow memory speed,
may not be efficient in the near future. The same story holds for parallelism,
with communication network bandwidth improving at just 26%, and network
latency unimproved since the Cray T3E in 1996 until recently.

The largest scale target architectures of importance for LAPACK and ScaLA-
PACK include platforms now installed at NSF and DOE sites, as well as near
term procurements. Longer term the High Productivity Computing Systems
(HPCS) program [45] is supporting the construction of petascale computers by
Cray (Cascade) and IBM (PERCS).

LAPACK and ScaLAPACK will have to run efficiently and correctly on a
much wider array of platforms than in the past. In addition to the above ar-
chitecturally diverse set of supercomputers and multicore chips in laptops, some
future architectures are expected to be heterogeneous. For example, a cluster
purchased over time will consist of some old, slow processors and some new,
fast ones. Some processors may have higher loads from multiple users than oth-
ers. Even single machines will be heterogenous, consisting of a CPU and other,
faster, special purposes processors like GPUs, SSE units, etc. These will not just
be heterogeneous in performance, but possibly in floating point semantics, with
different units treating exceptions differently, or only computing in single preci-
sion. In a cluster, if one processor runs fastest handling denormalized numbers
according to the IEEE 754 floating point standard [46], and another is fastest
when flushing them to zero, then sending a number from one processor to an-
other may change its value or even lead to a trap. Either way, correctness is a
challenge, and not just for linear algebra.

It will be a challenge to map LAPACK’s and ScaLAPACK’s current soft-
ware hierarchy of BLAS/BLACS/PBLAS/LAPACK/ScaLAPACK efficiently to
all these platforms. For example, on a platform with multiple levels of paral-
lelism (multicores, SMPs, distributed memory) would it be better to treat each
SMP node as a ScaLAPACK process, calling parallelized BLAS or should each
processor within the SMP be mapped to a process, or something else?

A more radical departure from current practice would be to make our al-
gorithms asynchronous. Currently our algorithms are block synchronous, with
phases of computation followed by communication with (implicit) barriers. But
on networks that can overlap communication and computation, or on multi-
threaded shared memory machines, block synchrony can leave a significant frac-
tion of the platform idle at any time. For example, the LINPACK benchmark
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version of LU decomposition exploits such asynchrony and can run 2x faster
than its block synchronous ScaLAPACK counterpart (see Section 5).

3 Better Algorithms

Three categories of routines are going to be addressed in Sca/LAPACK: (1)
faster and/or more accurate algorithms for functions in LAPACK, which also
need to be put in ScaLAPACK (discussed here) (2) functions now in LAPACK
but not in ScaLAPACK (discussed in Section 4), and (3) functions in neither
LAPACK nor ScaLAPACK (also discussed in Section 4). The following are lists
of planned improvements.

Linear systems and least squares problems. Possible improvements in-
clude (1) iterative refinement using portable extra precision BLAS [52, 5, 14, 13]
to get guaranteed accuracy in linear systems [24] and least squares problems; (2)
iterative refinement where the LU factorization is computed in single precision
even though all the data is in double precision, in order to exploit the fact that
single can be from 2x faster than double (on an SSE unit) to 10x faster (on an
IBM Cell) – refinement is used to try to make the answer as accurate as standard
double precision LU factorization; (3) recursive data structures of Gustavson,
K̊agström et al [35] to improve memory locality, in particular for symmetric
packed matrix factorizations, but keeping the usual columnwise matrix interface;
(4) a more stable pivoting scheme for symmetric indefinite matrices proposed by
Ashcraft, Grimes and Lewis [4], that keeps the L factor more bounded than the
current Bunch-Kaufman factorization; (5) Cholesky factorization with diagonal
pivoting [44] that avoids a breakdown if the matrix is nearly indefinite/rank-
deficient, which is useful both for optimization problems and computing high
accuracy symmetric positive definite eigenvalue decompositions (EVD); (6) im-
proved condition estimators for tridiagonal [25, 43] or triangular [34] matrices;
and (7) “latency avoiding” variations on the LU and QR decompositions that
reduce the number of messages sent by factor equal to the block size in the 2D
block-cyclic layout, which may be advantageous when the latency is large.

Eigenvalue problems. Possible improvements include (1) the 2003 SIAM
Linear Algebra Prize winning work of Braman, Byers, and Mathias [16, 17] for
solving the nonsymmetric eigenvalue problem up to 10x faster, as well as ex-
tensions to QZ in collaboration with K̊agström and Kressner [50]; (2) a more
complete implementation of the 2006 SIAM Linear Algebra Prize winning work
of Dhillon and Parlett [57] on the Multiple Relatively Robust Representations
(MRRR) algorithm for the symmetric eigenvalue problem, including work by
Parlet and Vömel [58] to deal with tight clusters of eigenvalues and by Bien-
tensi, Dhillon and can de Geihn on load balancing in the parallel version [9];
(3) extensions of the MRRR algorithm to the SVD [41], though some potential
obstacles to guaranteed stability remain [70]; (4) a faster reduction to bidiagonal
form for the SVD by Howell, Fulton, et al [37] that uses new BLAS [13] to achieve
better memory locality; (5) a different faster bidiagonal reduction suitable for
the case when only left or only right singular vectors are desired, but with possi-
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ble less numerical stability [7, 59]; (6) when only a few eigen- or singular vectors
are desired, the successive band reduction approach of Bischof and Lang [11]
can move most flops from level 2 to level 3 BLAS; (7) an efficent algorithm by
Drmač and Veselić for computing the SVD with high relative accuracy [33]; and
(8) analogous high accuracy algorithms for the symmetric indefinite EVD by
Slapničar [61] and by Dopico, Molera and Moro [32].

4 Added Functionality

Putting more of LAPACK into ScaLAPACK. Numerous matrix data types
supported by LAPACK are not in ScaLAPACK. The most important omissions
are as follows: (1) There is no support for packed storage of symmetric (SP,PP) or
Hermitian (HP,PP) matrices, nor the triangular packed matrices (TP) resulting
from their factorizations (using ≈ n2/2 instead of n2 storage); these have been
requested by users. The interesting question is what data structure to support.
One possibility is recursive storage as discussed in Sec. 3 [35, 2]. Alternatively
the packed storage may be partially expanded into a 2D array in order to apply
Level 3 BLAS (GEMM) efficiently. Some preliminary ScaLAPACK prototypes
support packed storage for the Cholesky factorization and the symmetric eigen-
value problem [12]. (2) ScaLAPACK only offers limited support of band matrix
storage and does not specifically take advantage of symmetry or triangular form
(SB,HB,TB). (3) ScaLAPACK does not support data types for the standard
(HS) or generalized (HG, TG) nonsymmetric EVDs; see further below.

The table below compares the available functions in LAPACK and ScaLA-
PACK. The relevant user interfaces (’drivers’) are listed by subject and acronyms
are used for the software in the respective libraries. The table also shows that in
the ScaLAPACK library the implementation of some driver routines and their
specialized computational routines are currently missing. The highest priority
ones to include are marked “add”. We also want expert drivers that compute
error bounds.
Extending current functionality. We outline possible extensions of Sca/ LA-
PACK functionality, motivated by users and research progress: (1) efficient up-
dating of factorizations like Cholesky, LDLT , LU and QR, either using known
unblocked techniques [38, 26] or more recent blocked ones; (2) an O(n2) eigen-
value routine for companion matrices, i.e. to find roots of polynomials, which
would replace the roots() function in Matlab, based on recent work of Gu, Bini
and others on semiseparable matrices [20, 66, 10]; (3) recent structure-preserving
algorithms for matrix polynomial eigenvalue problems, especially quadratic eigen-
value problems [63]; (4) new algorithm for matrix functions like the square root,
exponential and sign function [23]; (5) algorithms for various Sylvester-type ma-
trix equations (recursive, RECSY; parallel, SCASY) [48, 49, 40]. (6) product and
quotient eigenvalue algorithms now in SLICOT [8] are being considered, using
the improved underlying EVD algorithms; and (7) out-of-core algorithms [12,
28, 27].
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LAPACK SCALAPACK

Linear Equations GESV (LU) PxGESV
POSV (Cholesky) PxPOSV
SYSV (LDLT ) missing, add

Least Squares (LS) GELS (QR) PxGELS
GELSY (QR w/pivoting) missing
GELSS (SVD w/QR) missing
GELSD (SVD w/D&C) missing

Generalized LS GGLSE (GRQ) missing
GGGLM (GQR) missing

Symmetric EVD SYEV (QR) PxSYEV
SYEVD (D&C) PxSYEVD
SYEVR (RRR) missing, add

Nonsymmetric EVD GEES (HQR) missing driver, add
GEEV (HQR + vectors) missing driver, add

SVD GESVD (QR) PxGESVD (missing complex C/Z)
GESDD (D&C) missing

Generalized Symmetric EVD SYGV (inverse iteration) PxSYGVX
SYGVD (D&C) missing, add

Generalized Nonsymmetric EVD GGES (HQZ) missing, add
GGEV (HQZ + vectors) missing, add

Generalized SVD GGSVD (Jacobi) missing

5 Software

Improving ease of use. “Ease of use” can be classified as follows: ease of pro-
gramming (which includes easy conversion from serial to parallel, from LAPACK
to ScaLAPACK and the possiblity to use high level interfaces), ease of obtaining
predictable results in dynamic environments (for debugging and performance),
and ease of installation (including performance tuning).

There are tradeoffs involved in each of these subgoals. In particular, ultimate
ease of programming, exemplified by typing x = A\b in order to solve Ax = b
(paying no attention to the data type, data structure, memory management or
algorithm choice) requires an infrastructure and user interface best left to the
builders of systems like MATLAB and may come at a significant performance
and reliability penalty. In particular, many users now exercise, and want to con-
tinue to exercise, detailed control over data types, data structures, memory man-
agement and algorithm choice, to attain both peak performance and reliability
(e.g., not running out of memory unexpectedly). But some users also would like
Sca/LAPACK to handle workspace allocation automatically, make it possible to
call Sca/LAPACK on a greater variety of user-defined data structures, and pick
the best algorithm when there is a choice.

To accomodate these “ease of programming” requests as well as requests to
make the Sca/LAPACK code accessible from other languages than Fortran, the
following steps are considered: (1) Produce new F95 modules for the LAPACK
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drivers, for workspace allocation and algorithm selection. (2) Produce new F95
modules for the ScaLAPACK drivers, which convert, if necessary, the user input
format (e.g., a simple block row layout across processors) to the optimal one
for ScaLAPACK (which may be a 2D block cyclic layout with block sizes that
depend on the matrix size, algorithm and architecture). Allocate memory as
needed. (3) Produce LAPACK and ScaLAPACK wrappers in other languages.
Based on current user surveys, these languages will tentatively be C, C++,
Python and MATLAB. See below for software engineering details.

Ease of conversion from serial code (LAPACK) to parallel code (ScaLA-
PACK) is done by making the interfaces (at least at the driver level) as similar
as possible. This includes expanding ScaLAPACK’s functionality to include as
much of LAPACK as possible (see Section 4).

Obtaining predictable results in a dynamic environment is important for de-
bugging (to get the same answer when the code is rerun), for reproducibility,
auditability (for scientific or legal purposes), and for performance (so that run-
times do not vary widely and unpredictably). Reproducibility in the face of asyn-
chronous algorithms and heterogeneous systems will come with a performance
penalty but is important for debugging and when auditability is critical.

To ease installation, we will use tools like autoconf and automatic perfor-
mance tuning, supporting users from those who want to download and use one
routine as quickly and simply as possible, to those who want an entire library,
and to test and performance tune it carefully.
Improved software engineering. We describe our software engineering (SWE)
approach. The main goals are to keep the substantial code base maintainable,
testable and evolvable into the future as architectures and languages change.
Maintaining compatibility with other software efforts and encouraging 3rd party
contributions to the efforts of the Sca/LAPACK team are also goals [51].

These goals involve tradeoffs. One could explore starting “from scratch”,
using higher level ways to express the algorithms from which specific imple-
mentations could be generated. This approach yields high flexibility allowing
the generation of code that is optimized for future computing platforms with
different layers of parallelism, different memory hierarchies, different ratios of
computation rate to bandwidth to latency, different programming languages and
compilers, etc. Indeed, one can think of the problem as implementing the follow-
ing meta-program:

(1) for all linear algebra problems
(linear systems, eigenproblems, ...)

(2) for all matrix types (general, symmetric, banded, ...)
(3) for all data types (real/complex, different precisions)
(4) for all machine architectures, communication topologies
(5) for all programming interfaces
(6) provide the best algorithm(s) available in terms of

performance and accuracy (‘‘algorithms’’ is plural
because sometimes no single one is always best)
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This potential scope is quite large, requiring a judicious mixture of prioritiza-
tion and automation. Indeed, there is prior work in automation [42], but so
far this work has addressed only part of the range of algorithmic techniques
Sca/LAPACK needs (e.g., not eigenproblems), it may not easily extend to more
asynchronous algorithms and still needs to be coupled to automatic performance
tuning techniques. Still, some phases of the meta-program are at least partly au-
tomatable now, namely steps (3) through (5) (see below).

Note that line (5) of the meta-program is “programming interfaces” not “pro-
gramming languages,” because the question of the best implementation language
is separate from providing ways to call it (from multiple languages). Currently
Sca/LAPACK is written in F77. Over the years, the Sca/LAPACK team and
others have built on this to provide interfaces or versions in other languages:
LAPACK95 [6] and LAPACK3E [3] for F95 (LAPACK3E providing a straight-
forward wrapper, and LAPACK95 using F95 arrays to simplify the interfaces at
some memory and performance costs), CLAPACK in C [21] (translated, mostly
automatically, using f2c [36]), LAPACK++ [29], TNT [64] in C++, and JLA-
PACK in Java [47] (translated using f2j).

First we summarize the SWE development plan and then the SWE research
plan. The development plan includes (1) maintaining the core in Fortan, adopt-
ing those features of F95 that most improve ease-of-use and ease-of-development
(recursion, modules, environmental enquiries) but do not prevent the most de-
manding users from attaining the highest performance and reliable control over
the run-time environment (so not automatic memory allocation). Keeping For-
tran is justified for cost and continuity reasons, as well as the fact that the most
effective optimizing compilers still work best on Fortran, even when they share
“back ends” with the C compiler, because of the added difficulty of discerning
the absence of aliasing in C [22]; (2) F95 wrappers for the drivers to improve ease
of use, via automatic workspace allocation and automatic algorithm selection;
(3) F95 wrappers for the drivers that use performance models to determine the
best layout for the user’s matrix (which may be 2D block-cyclic and/or recursive
instead of the 1D blocked layouts most natural to users) and which convert to
that layout and back invisibly to the user; (4) wrappers for the drivers in other
languages, like C, Python and Matlab; (5) using the new BLAS standard [15,
13, 5], for new Sca/LAPACK routines, which also provides new high precision
functionality needed for iterative refinement [24], and systematically ensuring
thread-safety; (6) using tools like autoconf, bugzilla, svn, automatic overnight
build and test, etc. to streamline installation and development and encourage
third party contributions, and using modules to provide extra precise versions
based on one source; and (7) doing systematic performance tuning, not just the
BLAS [69, 68] and the BLACS [54, 65], but the 1300 calls to the ILAENV routine
in LAPACK that provides various blocking parameters, and exploiting modeling
techniques that let the user choose how much tuning effort to expend [67, 56].

The following are SWE research tasks: (1) exploring the best mappings of
the Sca/LAPACK software layers (BLAS, BLACS, PBLAS, LAPACK, ScaLA-
PACK) to the hardware layers of emerging architectures, including deciding that
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different layers entirely are needed; (2) exploring the use of new parallel program-
ming languages being funded by NSF, DOE and the DARPA HPCS program,
namely UPC [19], Titanium [71], CAF [55], Fortress [1], X10 [60] and Cascade
[18]; (3) exploring further automation of the production of library software (ex-
isting work such as [42] still needs to address two-sided factorizations, iterative
algorithms for the EVD and SVD, more asynchronous algorithms, novel data
layouts, how multiple levels of parallelism map to multiple levels of hardware,
and so on); (4) using statistical models to accelerate performance tuning at in-
stallation time [67]; and (5) choosing the right subset of a cluster to run on at
run-time, depending on the dynamically changing load.
Multicore and multithreading. Message passing as used in ScaLAPACK in-
troduces memory overhead unnecessary on multicore platforms, degrading per-
formance and making it harder to schedule potentially parallel operations. Lim-
iting shared memory parallelism to fork-join parallelism (e.g., OpenMP) or the
BLAS is inadequate. Shared memory would let us replace data partitioning by
work partitioning, although cache locality requirements mean we still need either
two dimensional block cyclic (or perhaps recursive) layouts.

Shared memory systems have used client/server, work-crew, and pipelining
for parallelism, but because of data dependencies pipelining is most appropriate,
as well as being a good match for streaming hardware like the IBM Cell. For
efficiency we must avoid pipeline stalls when data dependencies block execution.

We illustrate this for LU factorization. LU has left-looking and right-looking
formulations [30]. Transition between the two can be done by automatic code
transformations [53], although more than simple dependency analysis is needed.
Lookahead can improve performance by performing panel factorizations in par-
allel with updates to the trailing matrix from the previous algorithm steps [62].
The lookahead can be of arbitrary depth (as exploited by the LINPACK bench-
mark [31]).

In fact lookahead provides a spectrum of implementations from right-looking
(no lookahead) to left-looking (maximum lookahead). Less lookahead avoids
pipeline stalls at the beginning of the factorization, but may introduce them
at the end; more lookahead provides more work at the end of the factorization
but may stall at the beginning.

Recent experiments show that pipeline stalls can be greatly reduced if unlim-
ited lookahead is allowed and the lookahead panel factorizations are dynamically
scheduled, which is much easier in shared memory than distributed memory, in
part because there is no storage overhead.

6 Performance

We give a few recent performance results for ScaLAPACK driver routines on
recent architectures. We discuss strong scalability, i.e. we keep the problem size
constant while increasing the number of processors.

Figure 1(left) gives the time to solve Ax = b for n = 8, 000 on a cluster of
dual processor 64 bit AMD Opterons with a Gigabit ethernet. As the number of
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processors increases from 1 to 64, the time decreases from 110 sec (3.1 GFlops)
to 9 sec (37.0 GFlops) (thanks to Emmanuel Jeannot for sharing the result.)

Figure 1(right) gives the time for the symmetric eigendecomposition with
n = 12, 000 on a 64 processor cluster of dual processor 64 bit Intel Xeon EMTs
with a Myrinet MX interconnect. The matrices are generated randomly using
the same generator as in the Linpack Benchmark, so there are no tight eigenvalue
clusters.
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Fig. 1. Left: Scalability of ScaLAPACK’s LU (pdgetrf) for n = 8, 000. Right: Scala-
bility of the ScaLAPACK’s symmetric eigensolvers with n = 12, 000. Four eigensolvers
are shown: BX (pdsyevx), QR (pdsyev), DC (pdsyevd) and MRRR (pdsyevr).
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