
An Energy-Efficient Abstraction for Simultaneous
Breadth-First Searches

Adam McLaughlin Jason Riedy David A. Bader
Georgia Institute of Technology

Atlanta, GA, USA

Abstract—Optimized GPU kernels are sufficiently complicated
to write that they often are specialized to specific input data,
target architectures, or applications. This paper presents a multi-
search abstraction for computing multiple breadth-first searches
in parallel and demonstrates a high-performance, general imple-
mentation. Our abstraction removes the burden of orchestrating
graph traversal from the user while providing high performance
and low energy usage, an often overlooked component of al-
gorithm design. Energy consumption has become a first-class
hardware design constraint for both massive and embedded
computing platforms.

Our abstraction can be applied to such problems as the all-
pairs shortest-path problem, community detection, reachability
querying, and others. To map graph traversal efficiently to
NVIDIA GPUs, our hybrid implementation chooses between
processing active vertices with a single thread or an entire warp
based on vertex outdegree. For a set of twelve varied graphs,
the implementation of our abstraction saves 42% time and 62%
energy on average compared to representative implementations
of specific applications from existing literature.

I. INTRODUCTION

Graphs can represent diverse sets of data from social net-
works [1] to the structure of computer programs [14]. Problems
in areas such as urban planning [25] and epidemiology [17]
are well-expressed by graphs and solved by different graph
traversal algorithms. The applications often use large data sets
relative to the platform and can leverage massive parallelism
and memory bandwidth in GPUs for efficient solution.

The difficulty of programming GPU kernels and the
immature state of GPU software has made it difficult for
end-users to leverage the contributions of the domain experts
who spend months of time optimizing GPU applications. GPU
kernels are typically written and manually optimized for peak
performance on a particular architecture, input data set, or
application. Furthermore, relatively little work has been done
to study the energy consumption of GPU algorithms. A lack
of Dennard scaling and the era of dark silicon [7] imply that
knowledge regarding the energy consumption of algorithmic
choices is more important than ever.

This paper addresses issues in abstraction and efficiency
with an abstraction for solving simultaneous graph traversals
on the GPU that allows energy- and time-efficient general
implementations. The abstraction itself is simple. Users only
write functions for parts of the graph traversal relevant to
their target application. Error prone and performance-sensitive
details of executing parallel graph traversals on the GPU
is buried in the general implementation, allowing users to
focus on application-specific functionality. We evaluate our

implementation against a set of diverse graphs, ensuring that
the performance of our abstraction is not specialized to certain
classes of graphs. Finally, we show that performance efficiency
translates to energy efficiency.

In summary, we present the following contributions:

• We present an abstraction for executing simultaneous
graph traversals on the GPU that permits a hybrid
implementation. Vertices with sufficiently high outdegree
are cooperatively processed by an entire warp whereas
vertices with fewer neighbors are handled by a single
thread.

• On NVIDIA GPUs, our implementation maximizes warp
utilization and uses dynamic scheduling of warps to
tasks to load-balance warps. We show that the additional
performance efficiency reduces energy requirements.

• From web-crawls to road networks, we show that our ab-
straction achieves better performance and energy-efficiency
than existing methods in addition to being more general.
Our implementation saves 42% time and 62% energy
on average over an oracle that chooses the best existing
method for the graphs we studied.

II. BACKGROUND

The computational throughput and memory bandwidth of
GPUs provides a significant advantage over conventional CPU
architectures in terms of performance and energy-efficiency [20].
Unfortunately, major efforts spent in the development of GPU
algorithms that achieve high processor utilization see little to
no reuse. Programming abstractions not only allow for more
modular code but also make it easier for users to reason about
the problems they are trying to solve rather than the details
of parallel algorithm design or hardware. The remainder of
this section presents the multi-search abstraction, a simple
abstraction we employ for the execution of simultaneous
breadth-first searches on sparse data sets.

A. The Multi-Search Abstraction

A number of existing libraries provide abstractions in
order to simplify the development of parallel graph algorithms
without sacrificing performance [1], [24], [26], [27]. These
libraries typically use traversal-based abstractions that handle
the performance-sensitive steps of a breath-first search, such
as gathering neighbors and appropriately partitioning work
to threads. Users of these abstractions are only required to
implement a small number of functions that are specific to the
problem that they are trying to solve. These functions typically
handle what data structures need to be updated when vertices



are visited as well as the initialization and termination of the
algorithm.

Inspired by these techniques and findings from previous
work of our own, we generalize these traversal-based abstrac-
tions in the event that many such breadth-first searches are
required by the user. The multi-search abstraction fits any
problem that can execute independent breadth-first searches.
The semantics of each search are the same with the exception
that the searches start from different sources and write their
own output. Examples of classical graph algorithms that fit this
abstraction well are the All-Pairs Shortest Path (APSP) Problem,
Reachability Querying, Betweenness Centrality, and Diameter
Computation. Although traversal-based approaches can be
applied to all of these problems, existing frameworks neglect
the available coarse-grained parallelism that these problems
provide and thus miss out on opportunities for performance
improvements, particularly for high-diameter graphs.

Finally, there have been a number of studies on the
power consumption and energy-efficiency of GPU applications.
McLaughlin et al. present a study on GPU optimizations
for static and dynamic betweenness centrality that showed
an 83% average reduction in energy-to-solution over prior
techniques [20]. Nagasaka et al. use a statistical approach to
model the power consumption of GPU kernels using hardware
performance counters [23]. Hong and Kim develop an integrated
power and performance model for GPU kernels and show
potential energy savings for memory-bound applications [11].

B. Related Work

Ligra [26], Galois [24], GraphLab [8], the Parallel Boost
Graph Library (BGL) [9], and Green Marl [10] are frameworks
that all provide CPU-based abstractions for graph analysis.
GraphLab takes a disk-based approach, improving upon dis-
tributed frameworks such as Pregel [18]. Green-Marl takes
a domain-specific language approach to graph processing by
applying compiler optimizations that could not be applied to
more general purpose programs [10]. Galois and Ligra are
shared memory CPU approaches to processing large graphs
in memory. Galois uses internal parallel data structures to
asynchronously process worklists while Ligra uses a traversal-
based abstraction that internally uses a hybrid method of graph
traversal based on the density of the graph.

The GraphBLAS provides a set of primitives for graph
processing in the context of linear algebra [13]. Users of the
GraphBLAS define a semiring on which to perform sparse
matrix products. For instance, the APSP problem can be solved
on the tropical (min,+) semiring. In contrast, users of our system
instead define callback functions that are invoked when vertices
are visited.

GPU efforts in the realm of graph analysis have mostly
focused on manual, monolithic implementations of specific
algorithms [19], [21] although a number of frameworks have
been proposed in recent literature [4], [27], [28]. Medusa
was the first such approach, providing APIs that can act on
edges and vertices [28]. The Gunrock library from Wang et al.
improves upon this work with load-balancing techniques that
significantly improve performance [27]. GasCL is an OpenCL
graph framework that uses GraphLab’s Gather-Apply-Scatter
(GAS) abstraction [4]. Finally, the CUSP library focuses linear

algebraic implementations of algorithms that operate on sparse
data sets [5].

III. METHODOLOGY

Breadth-First Searches (BFSs) consist of a number of search
iterations, beginning with the source vertex of the search. Each
iteration explores the unvisited neighbors discovered by the
previous iteration. We define a vertex frontier as the set of
vertices to be explored during a specified iteration of a breadth-
first search. Users of our abstraction define the set of vertices
in which traversals are to be enacted from as a small number
of functions:

• init(): Initialize data structures at the beginning of
program execution.

• prior(): Handle any computation that may occur just
prior to a search iteration.

• visitVertex(): When an edge (u, v) is traversed
from source i, update the appropriate data structures in
terms of u, v, and i.

• post(): Handle any computation that may occur at the
end of a search iteration.

• finalize(): Handle any computation that may occur
after all the searches have completed.

These functions are typically short and performance-
insensitive. When writing these functions, users will have to
be aware that synchronization will sometimes be necessary to
avoid race conditions, a consequence that has been observed
in existing frameworks [26], [27].

A. Implementation

Prior literature has presented a number of ways to solve
the APSP problem (or other algorithms requiring its solution
as a subroutine) on the GPU [12], [19]. A number of these
implementations implicitly implement the multi-search abstrac-
tion to handle graph traversals for their particular use case.
Our approach, in addition to being more general, improves
upon the performance provided by these techniques through
the use of warp-synchronous programming and a hierarchical
queueing scheme. GPU computing involves distributing work
to Cooperative Thread Arrays (CTAs) as well as to the threads
within each CTA. Warp-synchronous programming leverages
additional knowledge about how CTAs are mapped onto GPU
hardware, namely the fact that each streaming multiprocessor
of the GPU executes instructions in lockstep in groups of
32 threads (on current NVIDIA platforms) referred to as
warps (using CUDA terminology). This execution model allows
programmers to have warps cooperatively and asynchronously
process sets of data from other warps, minimizing intrablock
barriers and allowing dynamic scheduling of tasks. For instance,
we assign each warp to a vertex in the active frontier of the
BFS being processed by the SM to which the warp belongs.
Rather than statically assigning warps {0 . . . k−1} to elements
{0, k, . . .} . . . {k − 1, 2k − 1, . . .} of the frontier we use a
dynamic scheduling policy that has each warp grab the next
unprocessed queue element (using atomic operations to prevent
race conditions). Although atomic operations have been shown
to have significant performance impacts [22], this particular
usage of them has a negligible effect on performance: the
memory location under contention resides in shared memory



and a maximum of 32 threads (one thread per warp and a
maximum of 32 warps per thread block) will ever try to
increase the counter that points to the next queue element
to be accessed. The use of dynamic scheduling is significant
for scale-free graphs since idle warps can effectively steal
work from the critical warp, providing better load-balancing
between the warps of each SM. NVIDIA’s Kepler (and newer)
architectures provide the __shfl() intrinsic that allows for
exchanging data between the threads of a warp without explicit
synchronization. We also leverage the __ldg() intrinsic to
leverage the GPU’s read only data cache for certain loads from
global memory. Of course, this is just one implementation for
a set of hardware problems. Others are possible, and users
of the abstraction won’t need to change their code when
implementations of the abstraction are improved.

B. Thresholding

Initial experiments with the above approach performed
poorly on graphs containing many vertices of low outdegree.
When an entire warp is assigned to a vertex with outdegree
smaller than the architectural warp size, some threads within
the warp will be idle. Hence, for vertices with sufficiently small
outdegree, we assign a single thread per vertex to gather its
neighbors. We use two distinct queues, one that consists of
vertices with sufficiently small outdegree to be processed by a
single thread (Qsmall) and one that consists of vertices with a
larger outdegree to be processed by an entire warp (Q). During
each iteration of the search, the vertices in Q are processed
by the warps in each SM followed by the vertices in Qsmall

by individual threads. In order to determine how small the
outdegree of a vertex must be to be enqueued into Qsmall,
we use a threshold T . If the outdegree of a vertex is strictly
less than T it will be enqueued into Qsmall, else it will be
enqueued into Q. The MultiThreaded Graph Library [3] uses
a similar partitioning of vertices based on outdegree to avoid
load imbalance on CPUs.

Algorithm 1 shows a pseudocode implementation our of
multi-search abstraction. On the GPU we use a pair of arrays,
Qcurr and Qnext, to represent a single queue. Qcurr contains
the vertices in the active vertex frontier whose neighbors will
be explored during the current iteration of the traversal. Qnext

contains the unexplored neighbors of vertices in Qcurr that
will be explored during the next iteration of a traversal. We
use two such queues to implement our hybrid approach: Q and
Qsmall. The for loops on Lines 11 and 12 process vertices
with large adjacency lists sequentially by assigning an entire
warp of threads to gather the neighbors of each active vertex.
In contract, the for loops on Lines 14 and 15 process vertices
with small adjacency lists by assigning a single thread to
sequentially gather the neighbors of each active vertex. The
functions init(), prior(), visitVertex(), post(),
and finalize() are user-defined functions to fit the higher-
level application that they wish to target. These functions
are typically concise and do not have significant impacts on
performance. Depending on the user’s application, some of
these functions may even be left empty. For instance, to solve
the APSP problem, only init() and visitVertex() need
to be defined. Our implementation uses C++ templates to allow
users to define these functions as functor objects, function
pointers, or lambda expressions.

Algorithm 1: Pseudocode for the Warp-Thread Hybrid
Multi-Search Abstraction Kernel
// Loop across SMs

1 for i ∈ S do in parallel
2 if outdegree(i) < T then
3 Qsmall curr.enqueue(i)

4 else
5 Qcurr.enqueue(i)

6 init(i)
7 barrier()
8 while ¬Qcurr.empty() ∧ ¬Qsmall curr.empty() do
9 prior()

10 barrier()
11 for v ∈ Qcurr do

// Loop across threads
12 for w ∈ neighbors(v) do in parallel
13 visitV ertex(i, v, w,Qnext, Qsmall next)

// Loop across threads
14 for v ∈ Qsmall curr do in parallel
15 for w ∈ neighbors(v) do
16 visitV ertex(i, v, w,Qnext, Qsmall next)

17 move(Qcurr, Qnext)
18 move(Qsmall curr, Qsmall next)
19 barrier()
20 post()
21 barrier()

22 finalize(i)

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

●

● ● ●

●

● ●

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

1 2 4 8 16 32 64

●

as−Skitter
auto
delaunay_n21
rgg_n_2_21_s0

Threshold Value

N
or

m
al

iz
ed

 T
im

e

Fig. 1. Relative effect of the threshold parameter T on performance.



TABLE I. GRAPH DATASETS USED FOR THIS STUDY.

Graph Nodes Edges Significance

333SP 3,712,815 22,217,266 Ferrari
adapative 6,815,744 27,248,640 Urban Sim.
as-Skitter 1,696,415 22,190,596 Internet

auto 448,695 6,629,222 Partitioning
delaunay n21 2,097,152 12,582,816 Triangulation

ecology1 1,000,000 3,996,000 Gene Flow
hollywood-2009 1,139,905 115,031,232 Movie Actors

kron g500-logn19 524,288 43,561,574 Kronecker
ldoor 952,203 45,570,272 Large Door

rgg n 2 21 s0 2,097,152 28,975,990 Geometric
roadNet-CA 1,971,281 5,533,214 Intersections

thermal2 1,227,087 7,352,268 Diffusion

Figure 1 shows the relative improvement in performance for
varying values of T for a few graphs. Note that when T = 0,
all vertices are placed into Qlarge and are thus processed by an
entire warp. At the other extreme, when T =∞, all vertices are
placed into Qsmall and are thus processed by a single thread.
From Figure 1 we can see that T = 8 and T = 16 lead to
the largest improvements in performance, depending on the
particular input. When the threshold is too low, vertices with
low outdegree are processed by an entire warp, leading to many
idle threads within the warp. Conversely, when the threshold
is too high, vertices with high outdegree are processed by a
single thread when they instead supply enough parallelism for
an entire warp of threads, leading to load imbalances from
critical threads that have to traverse large adjacency lists. We
consider using a histogram of vertex outdegree for the entire
graph as a method of dynamically determining an appropriate
value of T to be an interesting idea for future work. For our
complete set of graphs using the value T = 16 worked best
overall, and this value will be used to report results in the next
section.

IV. EVALUATION

A. Experimental Setup

Table I shows the input graphs used to evaluate our
techniques. These graphs are publicly available data sets
from the DIMACS Challenge archives [2], the University
of Florida Sparse Matrix Collection [6], and the Stanford
Network Analysis Project (SNAP) [16]. We use both real
world graphs, such as the as-Skitter Internet topology graph,
and randomly generated graphs such as the rgg n 2 21 s0
geometric graph. These graphs have a broad range of diameters
as well, which is important as graph diameter has previously
been shown to significantly impact performance [20]. Graphs
such as delaunay n21 have a high diameter, which leads to
small vertex frontiers and many search iterations to completely
traverse the graph. In contrast, graphs such as hollywood-2008
have a low diameter, which leads to the majority of vertices
being explored in a single search iteration and typically fewer
than 10 search iterations to completely traverse the graph.

Code was written in CUDA C++ using the CUDA 7.0 toolkit.
For timing experiments we use an NVIDIA GTX GeForce Titan
GPU; since energy measurement via the NVIDIA Management
Library (NVML) can only be used on Tesla GPUs, we use an
NVIDIA Tesla K40c for experiments involving measurements
of power and energy. Both the Titan and K40 GPUs are based

on the “Kepler” architecture, have compute capability 3.5, and
a peak theoretical memory bandwidth of 288.4 GB/s. The
Titan has 14 SMs, 6 GB of global memory, and a base clock
frequency of 837 MHz. The K40 has 15 SMs, 12 GB of global
memory, a base clock frequency of 745 MHz, and a TDP of
245 W.

Using NVML and C++11 futures, we spawn off a
CPU thread to measure power asynchronously as GPU
kernels of interest are launched1. We sample the power
of the GPU once every ten milliseconds with a call to
nvmlDeviceGetPowerUsage(), which will only work for
Tesla class GPUs (hence our use of the K40). Using these
samples we record the numerical integration of the sampled
power consumption for the lifespan on a kernel, where one
kernel launch is all that is necessary for all 1024 graph traversals
for a given data set.

We evaluate our approach by comparing it to other GPU
methods used to solve the APSP problem (or problems that it
builds upon). We choose a value of k = 1024 source vertices
to perform graph traversals from in order to keep execution
times reasonable. For graphs that compromise of one large
connected component that contains greater than 90% of all
vertices in the graph (such as many real world graphs [15]),
the time to execute a graph traversal varies minimally from
one source vertex to another. Hence, the conclusions we draw
from our use of a subset of source vertices can be confidently
applied to the computation of the entire APSP problem. The
methods we compare to are as follows:

• Edge-parallel: Assigns a thread to every edge of the
graph for every search iteration, regardless of whether
or not the endpoints of that edge are vertices in the
active frontier. This approach is most effective when many
vertices belong to the active frontier [12].
• Work-efficient: Assigns a thread to every vertex

in the active frontier [19]. When T = ∞, our hybrid
approach simplifies to this approach.

• Oracle: A pseudo-hybrid approach that chooses between
Edge-parallel and Work-efficient, depending
on whichever method is better for the particular input graph
being analyzed. We present this result as a proxy for the
hybrid method used to compute Betweenness Centrality
in [19].

• Warp-based: Our method that assigns a warp to every
vertex in the active frontier. Threads within the warp
process consecutive outgoing edges from the active vertex.
When T = 0, our hybrid approach simplifies to this
approach.

• Warp-thread Hybrid: Our method that uses two
queues, one containing elements to be processed by a
single thread and the other containing elements to be
processed by an entire warp. When the outdegree of a
vertex is less than T , we use a single thread to collect
its neighbors. We use a static value of T = 16 for all
experiments.

B. Experimental Results

Table II shows the time required to execute all 1024
graph traversals (in seconds) on the GeForce GTX Titan using

1Source can be found at https://github.com/Adam27X/graph-utils/



TABLE II. TIMINGS FOR VARIOUS METHODS OF GRAPH TRAVERSAL IN SECONDS.

Graph Edge-parallel Work-efficient Oracle Warp-based Warp-thread Savings of Hybrid
Hybrid over Oracle

333SP 1279.5 47.8 47.8 68.0 32.1 33%
adapative 7704.7 54.8 54.8 183.6 42.8 22%
as-Skitter 30.7 27.8 27.8 12.9 9.66 65%

auto 21.6 15.6 15.6 5.48 4.82 69%
delaunay n21 436.8 23.3 23.3 25.1 15.0 36%

ecology1 426.9 8.86 8.86 29.1 6.51 27%
hollywood-2009 81.6 145.8 81.6 21.3 20.4 75%

kron g500-logn19 35.4 55.1 35.4 16.4 17.1 52%
ldoor 434.0 35.4 35.4 35.7 36.5 -3%

rgg n 2 21 s0 1824.9 67.0 67.0 37.0 23.7 65%
roadNet-CA 183.8 12.3 12.3 15.0 9.15 26%

thermal2 650.4 11.7 11.7 19.4 7.71 34%

the methods explained in the previous section. Although our
Warp-thread Hybrid approach is best for 10 of the 12
graphs tested, the magnitude by which it is best is dependent
on the threshold parameter T . For instance, our non-threshold
based Warp-based approach does better than our hybrid
approach for kron g500-logn19 and ldoor; however, simply
setting T = 0 for such graphs would solve this issue. Hence,
for future work we will consider an approach that determines
the appropriate value of T for a given graph based on the
distribution of the outdegree of its vertices.

Interestingly, for ldoor the Work-efficient ap-
proach is slightly better than both our Warp-based and
Warp-thread Hybrid approaches. Again, setting the
threshold dynamically (to T =∞ in this case) could solve this
problem. The maximum outdegree for any vertex of ldoor is 76
and 99.8% of vertices in ldoor have an outdegree of 63 or less.
Since the current warp size of NVIDIA GPUs is 32 threads,
this means any vertex assigned to a warp will process at most
three (and very often only two) edges, which doesn’t provide
sufficient instruction level parallelism to each thread. Hence,
assigning active vertices to threads for this graph results in
marginally better performance. Overall, our Warp-thread
Hybrid approach improves upon that of the Oracle by
42%. In practice, the implementation of such an oracle would
have some overhead associated with choosing between the
Edge-parallel and Work-efficient methods, making
this result a lower bound for the improvement of our approach
in practice.

In addition to being faster than existing approaches, our
Warp-based and Warp-thread Hybrid approaches tend
to consume less instantaneous power. The Edge-parallel
approach is energy-inefficient because threads are assigned to
edges that don’t necessarily belong to the active frontier and
the Work-efficient approach is energy-inefficient because
threads have an imbalanced amount of neighbors to gather and
hence cause other threads within the same warp to stall and
wait for whichever thread belongs to the warp’s critical path.
Table III shows the energy required to execute all 1024 graph
traversals (in Joules) on the Telsa K40c using these approaches.
For almost every graph we tested, the energy savings of our
techniques are greater than the savings in time shown in
Table II, confirming the above analysis regarding the energy-
efficiencies of prior work. Even though our performance results
were slightly slower than the Oracle for ldoor, our energy

usage is much better due to our efficient warp utilization. For
as-Skitter, hollywood-2009, and roadNet-CA, we can see that
there are interesting trade-offs between performance and energy
consumption; although our hybrid approach provides the best
performance for each of these graphs, our warp-based approach
provides better energy-efficiency. The choice of the threshold
parameter T again plays a considerable role for these trade-
offs. Overall, our Warp-thread Hybrid approach saves
62% energy on average compared to the Oracle approach
and we again note that this figure neglects the energy cost
of choosing a preferential distribution of threads to work that
would be required by the implementation of such an oracle.

V. CONCLUSION

This paper explored the performance and energy character-
istics for multi-search, a simple GPU abstraction to execute
simultaneous breath-first searches. Our initial approach of
assigning warps to cooperatively gather neighbors from vertices
in the active vertex frontier worked well for low-diameter
graphs, but suffered from warp occupancy and utilization
for high-diameter graphs. To account for this deficiency, we
presented a hybrid approach that assigns a single thread to
gather neighbors of vertices with sufficiently small outdegree.
Across a varied set of real-world and synthetic graphs, our
hybrid approach saves 42% time and 62% energy on average
over an oracle that is an idealized representation of previous
literature.

In addition to implementing a dynamic version of our hybrid
approach we plan to consider performance and programma-
bility tradeoffs to obtain a desirable level of abstraction for
future work. The automation of GPU kernel optimization is
another area of work that we consider to be important. Such
automation can be achieved through compiler optimizations,
runtime libraries, and even domain-specific languages. Finally,
the management of power for accelerators, heterogeneous
processors, and distributed systems is a growing area of
promising research.

ACKNOWLEDGMENT

The work depicted in this paper was partially sponsored
by Defense Advanced Research Projects Agency (DARPA)
under agreement #HR0011-13-2-0001. The content, views and
conclusions presented in this document do not necessarily reflect
the position or the policy of DARPA or the U.S. Government, no



TABLE III. ENERGY CONSUMPTION FOR VARIOUS METHODS OF GRAPH TRAVERSAL IN JOULES.

Graph Edge-parallel Work-efficient Oracle Warp-based Warp-thread Savings of Hybrid
Hybrid over Oracle

333SP 36,676 2,220 2,220 2,880 1,083 51%
adapative 316,299 8,551 8,551 6,790 1,433 83%
as-Skitter 5,004 4,688 4,688 1,053 1,606 66%

auto 635 1,164 635 539 159 75%
delaunay n21 12,403 1,425 1,425 1,495 508 64%

ecology1 12,309 856 856 1,642 219 74%
hollywood-2009 11,546 25,577 11,546 1355 3,342 71%

kron g500-logn19 1,180 2,492 1,180 1,195 570 52%
ldoor 12,527 1,829 1,829 1,855 1,210 34%

rgg n 2 21 s0 50,525 2,851 2,851 1,908 759 73%
roadNet-CA 26,950 2,050 2,050 1,144 1,539 25%

thermal2 17,566 996 996 1,311 259 74%

official endorsement should be inferred. Distribution Statement
A: “Approved for public release; distribution is unlimited.” This
work was also partially sponsored by NSF Grant ACI-1339745
(XScala). Finally, we would like to thank NVIDIA Corporation
for their donation of GeForce GTX Titan and Telsa K40 GPUs.

REFERENCES

[1] D. A. Bader and K. Madduri, “SNAP, Small-world Network Analysis and
Partitioning: an open-source parallel graph framework for the exploration
of large-scale networks,” in Parallel and Distributed Processing, 2008.
IPDPS 2008. IEEE International Symposium on. IEEE, 2008, pp. 1–12.

[2] D. Bader, H. Meyerhenke, P. Sanders, C. Schulz, A. Kappes, and
D. Wagner, “Benchmarking for Graph Clustering and Partitioning,” in
Encyclopedia of Social Network Analysis and Mining, R. Alhajj and
J. Rokne, Eds. Springer New York, 2014, pp. 73–82.

[3] J. Berry, B. Hendrickson, S. Kahan, and P. Konecny, “Software and
algorithms for graph queries on multithreaded architectures,” in Parallel
and Distributed Processing Symposium, 2007. IPDPS 2007. IEEE
International, March 2007, pp. 1–14.

[4] S. Che, “Gascl: A vertex-centric graph model for gpus,” in IEEE High
Performance Extreme Computing Conference (HPEC), 2014.

[5] S. Dalton, N. Bell, and L. Olson, “Optimizing sparse matrix-matrix
multiplication for the gpu,” 2013.

[6] T. A. Davis and Y. Hu, “The University of Florida Sparse Matrix
Collection,” ACM Trans. Math. Softw., vol. 38, no. 1, pp. 1:1–1:25, Dec.
2011.

[7] H. Esmaeilzadeh, E. Blem, R. St Amant, K. Sankaralingam, and
D. Burger, “Dark silicon and the end of multicore scaling,” in Computer
Architecture (ISCA), 2011 38th Annual International Symposium on.
IEEE, 2011, pp. 365–376.

[8] J. E. Gonzalez, Y. Low, H. Gu, D. Bickson, and C. Guestrin, “Powergraph:
Distributed graph-parallel computation on natural graphs.” OSDI, vol. 12,
no. 1, p. 2, 2012.

[9] D. Gregor and A. Lumsdaine, “The Parallel BGL: A generic library
for distributed graph computations,” Parallel Object-Oriented Scientific
Computing (POOSC), vol. 2, pp. 1–18, 2005.

[10] S. Hong, H. Chafi, E. Sedlar, and K. Olukotun, “Green-marl: a dsl
for easy and efficient graph analysis,” in ACM SIGARCH Computer
Architecture News, vol. 40, no. 1. ACM, 2012, pp. 349–362.

[11] S. Hong and H. Kim, “An integrated gpu power and performance model,”
in ACM SIGARCH Computer Architecture News, vol. 38, no. 3. ACM,
2010, pp. 280–289.

[12] Y. Jia, V. Lu, J. Hoberock, M. Garland, and J. C. Hart, “Edge v. Node
Parallelism for Graph Centrality Metrics,” GPU Computing Gems, vol. 2,
pp. 15–30, 2011.

[13] J. Kepner, D. A. Bader, A. Buluc, J. Gilbert, T. Mattson, and H. Meyer-
henke, “Graphs, Matrices, and the GraphBLAS: Seven Good Reasons,”
arXiv preprint arXiv:1504.01039, 2015.

[14] C. Lattner and V. Adve, “Llvm: A compilation framework for lifelong
program analysis & transformation,” in Code Generation and Optimiza-
tion, 2004. CGO 2004. International Symposium on. IEEE, 2004, pp.
75–86.

[15] J. Leskovec, J. Kleinberg, and C. Faloutsos, “Graph evolution: Den-
sification and shrinking diameters,” ACM Transactions on Knowledge
Discovery from Data (TKDD), vol. 1, no. 1, p. 2, 2007.

[16] J. Leskovec and A. Krevl, “SNAP Datasets: Stanford large network
dataset collection,” http://snap.stanford.edu/data, Jun. 2014.

[17] F. Liljeros, C. R. Edling, L. A. Amaral, H. E. Stanley, and Y. Aberg,
“The Web of Human Sexual Contacts,” Nature, vol. 411, no. 6840, pp.
907–908, 2001.

[18] G. Malewicz, M. H. Austern, A. J. Bik, J. C. Dehnert, I. Horn, N. Leiser,
and G. Czajkowski, “Pregel: a system for large-scale graph processing,”
in Proceedings of the 2010 ACM SIGMOD International Conference on
Management of data. ACM, 2010, pp. 135–146.

[19] A. McLaughlin and D. A. Bader, “Scalable and High Performance
Betweenness Centrality on the GPU,” in Proceedings of the 26th
ACM/IEEE International Conference on High Performance Computing,
Networking, Storage, and Analysis (SC), 2014.

[20] A. McLaughlin, J. Riedy, and D. A. Bader, “Optimizing Energy Con-
sumption and Parallel Performance for Static and Dynamic Betweenness
Centrality using GPUs,” in Eighteenth IEEE High Performance Extreme
Computing Conference (HPEC), 2014.

[21] D. Merrill, M. Garland, and A. Grimshaw, “Scalable GPU Graph
Traversal,” in Proceedings of the 17th ACM SIGPLAN Symposium on
Principles and Practice of Parallel Programming, ser. PPoPP ’12. New
York, NY, USA: ACM, 2012, pp. 117–128.

[22] D. G. Merrill, III, “Allocation-oriented algorithm design with application
to gpu computing,” Ph.D. dissertation, Charlottesville, VA, USA, 2011.

[23] H. Nagasaka, N. Maruyama, A. Nukada, T. Endo, and S. Matsuoka,
“Statistical power modeling of gpu kernels using performance counters,”
in Green Computing Conference, 2010 International. IEEE, 2010, pp.
115–122.

[24] D. Nguyen, A. Lenharth, and K. Pingali, “A Lightweight Infrastructure
for Graph Analytics,” in Proceedings of ACM Symposium on Operating
Systems Principles, ser. SOSP ’13, 2013, pp. 456–471.

[25] S. Porta, V. Latora, F. Wang, E. Strano, A. Cardillo, S. Scellato,
V. Iacoviello, and R. Messora, “Street Centrality and Densities of Retail
and Services in Bologna, Italy,” Environment and Planning B: Planning
and design, vol. 36, no. 3, pp. 450–465, 2009.

[26] J. Shun and G. E. Blelloch, “Ligra: A Lightweight Graph Processing
Framework for Shared Memory,” in Proceedings of the 18th ACM SIG-
PLAN Symposium on Principles and Practice of Parallel Programming,
ser. PPoPP ’13. New York, NY, USA: ACM, 2013, pp. 135–146.

[27] Y. Wang, A. Davidson, Y. Pan, Y. Wu, A. Riffel, and J. D. Owens,
“Gunrock: A high-performance graph processing library on the GPU,”
CoRR, vol. abs/1501.05387, no. 1501.05387v1, Jan. 2015.

[28] J. Zhong and B. He, “Medusa: Simplified graph processing on gpus,”
2013.


