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2. Target Applications

Direct solution of sparse, unsymmetric linear
systems through LU factorization.

• Factor many related matrices

– inverse problems, fluid flow, optimization, eigenvalues

– Values change, structure doesn’t

• Factor large matrices

– 8 million columns (supercomputer-sized)



3. Issues with Dynamic Pivoting

Parallel numerical work scales pretty well.
Analysis work is unpredictable.

• Scalability: A larger problem requires proportionally more resources for
same speed.

• Users and computer facilities want predictability.

• Parallel analysis work (new) is discrete and not predictable. . .
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Amortize analysis work over many numerical runs.



4. Issues with Dynamic Pivoting

Dynamic pivoting can change the explicit
entry structure at every step.

Changing the entry structure also changes:

• Column dependencies

– Wrecks parallel scheduling.

• Data structures

– Imposes communication and memory overheads.

• Computation and communication patterns

– Causes load imbalancing.

Want to decouple analysis and numeric work.



5. SuperLU v. MUMPS

Figure 21: Parallel e¡ciency (cubic grids, nested dissection).
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• “Perfect” example: 3-D grid with nested dissection

• MUMPS achieves higher MFLOP/s until 128 processors

• SuperLU uses 2-D distribution and static pivoting



6. Practical Pivoting Alternatives

Something needs to control element growth.

• Coping with dynamic pivots:

– Assume all pivoting is satisfied within the front, delaying unavailable
pivots

– Include all (heuristically) possible pivots in structure

• Avoiding structure-changing pivoting altogether:

– Static pivoting through matchings

– Structure-limited pivoting

– Iterative methods rather than refinement



7. Coping with Dynamic Pivots

Dynamic pivots require dynamic response or
over-estimation.

• Do everything dynamically

– MUMPS: Duff, Amestoy, et al. (CERFACS)

– Scheduling, load-balancing, etc. must be dynamic.

– Assume pivots are local, delay those that fail

• Consider all possible pivots

– WSMP: Gupta (IBM)

– Data dependencies include all (heuristically) reasonable pivots

– Frontal matrices constructed dynamically



8. Static Pivoting

Few entries should interact during sparse factorization,
so large elements shouldn’t change much.

• Pre-pivot with a matching [Olshowka, Neumaier] [Duff, Koster]

• Matrix A gives bipartite graph G(A) = {R, C; E}

• Find a maximum weight matching on G(A)

– Matching corresponds to a permutation M

– Also provides a particular row scaling Sr and column scaling Sca11 a12 0

a12 0 a23

0 a32 0

 1 0 0

0 0 1
0 1 0


• Factor LU = P T

c MTSrAScPc = P T
c MTAsPc

• No dynamic structural changes.



9. Static Pivoting with Perturbations

Tiny pivots still occur from cancellation. But this
kind of cancellation implies round-off. . .

• Perturb small diagonal entries [Li and Demmel]

– Similar ideas for symmetric indefinite
[Gill, Murray, Wright], [Eskow, Schnabel], [Cheng, Higham]

• Tiny pivots encourage drastic element growth.

• Drastic element growth leads to unintended cancellation.

• Change tiny pivots to some larger number.

P T
c MTAsPc =

L11 0 0

λ21 1 0

L31 0 I

 I 0 0

0 π22 s23

0 s32 S33

 U11 ν12 U13

0 1 0

0 0 I
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12. Static Pivoting with Perturbations

Tiny pivots still occur from cancellation. But this
kind of cancellation implies round-off. . .

• Perturb small diagonal entries [Li and Demmel]

– Similar ideas for symmetric indefinite
[Gill, Murray, Wright], [Eskow, Schnabel], [Cheng, Higham]

• Tiny pivots encourage drastic element growth.

• Drastic element growth leads to unintended cancellation.

• Change tiny pivots to some larger number.

P T
c MTAsPc = LU + D

• D is diagonal with only a few small diagonal entries.



13. Static Pivoting Parameters

One downside: There are many more parameters
and tuning choices.

• What scaling to use?

– Matching-based, or typical equilibration

• What type of matching? What are the weights of G(A)?

– Pure structural or value-based

• How large a perturbation?

– SuperLU:
√

ε‖As‖1

∗ ‖As‖1: “weight” of column

∗
√

ε: half-precision perturbation

• How do we improve the solution?

– Iterative refinement or an iterative method (GMRES)

Determine through experiments
(MatrixMarket and UF collections)



14. Scaling

Cheap is good.

• Computing Olshowka and Neumaier’s scaling is expensive.

• Has no effect beyond (very cheap) equilibration.

• True for both static and dynamic pivoting.

No Equilibration Equilibration
No O&N scaling no improvement fixes scaling

O&N scaling fixes scaling no incremental improvement



15. Pattern-based Matching

We can’t get away from using the values.

Pattern-based:

• Maximum cardinality matching

– All edges have weight one.

– Quickly encounter element blow-up.

– Solves fail. Factors are far off the mark.

• Minimize the Markowitz cost

– Edge weight = n2 − (r − 1)(c − 1), the worst case fill from the given
pattern.

– Most solves still fail. Same problems.



16. Value-based Matching

We can’t get away from using the values.

Value-based:

• Maximize the least entry

– Relatively expensive; sequence of matchings

– Works sometimes.

• Maximize the diagonal’s sum

– Edge (i, j) has weight |aij|

• Maximize the diagonal’s product

– Edge (i, j) has weight log |aij|

The latter matchings with refinement fail to converge for few matrices (5-8 /
50). Maximizing the product requires fewer perturbations, and using integer
exponents is equivalent.



17. Perturbation Size

Size matters. Smaller is better.
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18. Number of Perturbations

The number matters, sometimes.
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Number of supernodes with pivots grows about half as quickly.



19. Perturbation Size: fidap011

The failing case changed many pivots by a tiny amount.
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Factored approx. 100 levels before reaching perturbations.



20. Other Matrices

• fidapm11

– Matching perfomed “poorly”.

– Two large entries forced many tiny ones onto the diagonal.

• Hopeless cases

– Really large condition numbers (lhr71c) fail.

• Complex: works?

– Don’t have many examples.

– Use magnitude for matching.



21. Static Pivoting’s Drawbacks

Is this still a direct method?

• When iterative refinement fails, use a general iterative method.

– LU factors of a low-rank perturbation, so GMRES

– Refinement depends on (A + D)−1D . . .

– Pivot changes of order rcond. . .

• Lose backwards stability?

• Lose predictability?

• Promising direction: Merge iterative and direct methods.

– Can we control the perturbations enough to prove things about the
combination in floating-point arithmetic?



22. Structure-Limited Pivoting

Can we exploit block structure for pivoting?

• Perturbations in < 30% of a supernode’s columns.

L

u
Ud

U

• Factor P T
c MTAPcQ = LU = L(Ud + UuQ)

• Don’t need to modify Uu storage or indexing.



23. Structure-Limited Pivoting

Can we exploit block structure for pivoting?

• Row supernodes or frontal matrices can use limited row pivoting.

• Factor QrP T
c MTAPc = LU = (QrLl + Ld)U

• Could even use limted complete pivoting, etc.



24. Observations

• Static pivoting is practical and promising.

– Separates numerical and analysis work.

– Can calculate static pivots in parallel.

– Needs work to keep all the benefits of a direct method

• Structure-limited pivoting is also promising.

– Takes more communication.

– Should preserve directness.
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